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Mesenchymal stem cells (MSCs) are an alluring therapeutic resource because of their plasticity, immunoregulatory capacity and
ease of availability. Human BM-derived MSCs have limited proliferative capability, consequently, it is challenging to use in tissue
engineering and regenerative medicine applications. Hence, placental MSCs of maternal origin, which is one of richest sources
of MSCs were chosen to establish long-term culture from the cotyledons of full-term human placenta. Flow analysis established
bonafied MSCs phenotypic characteristics, staining positively for CD29, CD73, CD90, CD105 and negatively for CD14, CD34,
CD45 markers. Pluripotency of the cultured MSCs was assessed by in vitro differentiation towards not only intralineage cells
like adipocytes, osteocytes, chondrocytes, and myotubules cells but also translineage differentiated towards pancreatic progenitor
cells, neural cells, and retinal cells displaying plasticity. These cells did not significantly alter cell cycle or apoptosis pattern while
maintaining the normal karyotype; they also have limited expression of MHC-II antigens and are Naive for stimulatory factors
CD80 and CD 86. Further soft agar assays revealed that placental MSCs do not have the ability to form invasive colonies.
Taking together all these characteristics into consideration, it indicates that placental MSCs could serve as good candidates for
development and progress of stem-cell based therapeutics.

1. Introduction

The term Mesenchymal stem cells (MSCs) was coined
by Caplan in 1991 [1]. MSCs are defined as the class
of stem cells that has the potential to self-renew and
differentiate into multiple cell lineages [2, 3]. The pres-
ence of mesenchymal stem cells in the bone marrow was
hypothesized by Cohnheim in 1860s [4]. In 1920s, Maximow
postulated the importance of the marrow stromal tissue in
supporting the development and maintenance of blood and
hematopoietic organs [5]. In 1960s, Friedenstein was the first
to demonstrate stromal cells could be isolated from whole
bone marrow aspirate based on differentiation adhesion to
tissue culture plastic dishes [6]. In addition, MSCs secrete
proangiogenic [7] and antiapoptotic cytokines and possess
immunosuppressive properties [8]. Bone marrow MSCs are

most commonly used and primary source of MSCs [9].
However, due to invasive nature of bone marrow aspiration
and limited proliferative capacity, efforts are underway to
identify abundant and reliable sources of MSCs for clinical
applications [9]. Mesenchymal stem cells can be broadly
grouped into two different subgroups adult MSCs and
fetal MSCs. Adult MSCs are isolated from bone marrow,
peripheral blood. Fetal MSCs are isolated from Placenta,
amniotic fluid, umbilical cord and umbilical cord blood [10].
Placenta provides one of the most reliable and abundant
source of MSCs [11]. Term placental tissues are discarded
after birth, hence these tissues can be effectively utilized for
research as well as clinical application without much ethical
concern. In this paper, we systematically characterize the
term placental MSCs isolated from cotyledons and validated
that the isolated MSCs fulfill the genotypic and functional
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criteria laid out for a proper MSC [11, 12]. We have
demonstrated that these MSCs have the ability to rapidly
expand up to even 25–30 passages without compromising
the chromosomal number, cell cycle or apoptosis pattern,
phenotypic characteristics, pluripotency-associated endoge-
nous gene expression profile, and differentiation capacity.
Placental MSCs were able to transdifferentiate into other cell
lineages thus exhibiting their inherent plasticity.

2. Materials and Methods

2.1. Collection of the Human Placenta Samples. The ethical
committee of Christian Medical College (CMC), Vellore,
approved the study. Following the written consent term
placental samples were collected from donors after elective
caesarean.

2.2. Cell Isolation. Term human placental MSCs were iso-
lated from cotyledons present towards the maternal side of
the placenta. The placental membrane from the maternal
side of the placenta was cut open and about 80 g of
cotyledons was exercised. The cotyledons was thoroughly
washed with PBS and cut into small pieces. The blood clots
present in the cotyledons were mechanically removed. The
minced placental was once again washed with physiological
saline and subjected to sequential digestion with trypsin
and collagenase I. The tissues were incubated with 0.25%
trypsin for 1 hour at 37◦C. After trypsin digestion, the sample
was filtered through 250 μm metal sieve. The retentate was
collected and subjected to second digestion with12.5 U/mL
collagenase I for 1 hour at 37◦C. Collagenase I digested tissue
sample was passed first through 250 μm metal sieve and
filtrate collected was passed through 100 μm cell strainer. The
filtrate containing cell suspension after dual filtration stages
were subjected to centrifugation at 300 g for 10 minutes.
The cell pellet was resuspended in RBC lysis buffer and
centrifuged at 300 g for 10 minutes. Finally, the cell pellet was
resuspended in Mesenchymal expansion medium (αMEM +
10% FBS + 50 u/mL penicillin + 50 μg/mL streptomycin +
1 mM L-glutamine) and plated into two 75 cm2 flasks.

2.3. Antibodies. Information on primary and secondary
antibodies used for flow-cytometry and immunostaining
experiments is provided in Supplementary Table 1 is avail-
able online at doi: 10.1155/2012/174328.

2.4. Flow Cytometry. Cells after trypsinization was equally
aliquoted (1 × 105 cells per reaction) into FACS tubes and
stained on live cells with respective antibody. Unstained
antibody and cells stained with isotype antibody acted as
controls. Antibodies were added to the cells in dark to avoid
bleaching. After addition of the antibody, the sample was
incubated at room temperature in dark for 20 minutes.
Cells were washed with 1 mL of DPBS without calcium
and magnesium and centrifuged at 300 g for 5 min. The
pelleted cells were resuspended in 300 μL DPBS w/o calcium

and magnesium and analyzed with a flow cytometer (FACS
Calibur; Becton Dickinson). A minimum of 104 gated events
was acquired from each sample for analysis using cell
quest.

2.5. Cytogenetic Analysis. Karyotyping of human placental
MSCs was carried at Passages 5 and 25 to verify the chro-
mosomal integrity. Metaphase chromosomal preparations
were performed according to standard procedures at a 400–
550 GTG band level. Zeiss axioplan microscope was used to
identify and analyse the chromosomes. Images were analyzed
with a photometrics charged coupled device camera and
controlled with smart capture imaging software.

2.6. Immunostaining. The cells cultured in 6-well plates were
blocked with PBS (without Ca2+ and Mg2+) containing 0.1%
BSA, fixed with 4% paraformaldehyde and permeabilized
using 0.2% Triton X-100. If using unconjugated antibody,
samples were first incubated with primary antibody, blocked
with PBS containing 0.1% BSA and subsequently incubated
with fluorescent dye conjugated secondary antibody. All
cell samples were additionally counterstained with Hoechst
33342. Images were taken using leica DMI6000B (Leica)
equipped with DFC360FX digital camera and analyzed with
Lecia AF imaging software (Leica).

2.7. Total RNA Isolation and Reverse Transcription Polymerase
Chain Reaction (RT-PCR). Total RNA isolation was carried
out using Trizol (Invitrogen). cDNA was prepared with
superscript III reverse transcriptase enzyme. The primer
sequences and their respective annealing temperature are
presented in supplementary entary Table 2. PCR conditions
were initial denaturation at 94◦C for 2 min, followed by
denaturation at 94◦C for 1 min, annealing for 1 min, exten-
sion at 72◦C for 2 min for 35 cycles, and final extension was
carried out at 72◦C for 5 min. Glyceraldehyde 3 phosphate
dehydrogenase (GAPDH) RNA was used as a control for
normalization of RNAs. PCR products were analyzed using
ethidium bromide stained 2% agarose gels. Analysis of the
gel images was carried out (Supplementary Table 2).

2.8. QPCR. Total RNA was extracted with Trizol (Invitrogen)
according to the manufacturer’s protocol. cDNA synthesis
was carried out using Superscript III First-Strand synthesis
system (Invitrogen). qRT-PCRs were carried out with SYBR
Green master mix and AB real-time thermocycler (AB 7500).
Primer sequences for the analysis of endogenous pluripo-
tency gene expression are mentioned in the table below. The
expression levels of individual genes were normalized against
β-Actin (Supplementary Table 2).

2.9. Cell Cycle Analysis. For cell cycle analysis [13], cells were
fixed with cold methanol, treated with RNase A 10 μg/mL,
stained with Propidium Iodide 50 μg/mL, and analyzed by
flowcytometer.
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2.10. Apoptosis Analysis. Apoptosis analysis was carried by
following the manufacturer’s instructions (BD Pharmingen
Annexin V). The cells were subjected to live staining with
Annexin V and 7-AAD and analyzed the cells through
flowcytometer.

2.11. Oligo-Lineage Differentiation Analysis. Placental MSCs
at various passages were subjected intra- and translineage
differentiation protocol to analyze the plasticity of the cells.
After differentiation, cells were stained with appropriate
stains and examined microscopically under Leica micro-
scope.

2.12. Adipogenic Differentiation. Placental MSCs at 5 × 104

cells were seeded onto 24-well plate (corning) containing
adipogenic differentiation medium (Invitrogen) for 30 days,
fresh medium added every 48 hours. Oil red O staining was
carried out to visualize the presence of fat droplets. Cells were
fixed with 4% paraformaldehyde, washed with sterile water,
and incubated with 60% isopropanol at room temperature.
Fixed cells were stained with 0.5% oil red O in isopropanol
for 20 minutes at room temperature. After staining, cells were
first washed with 60% isopropanol later rinsed with sterile
water before observing under the microscope for imaging.

2.13. Chondrogenic Differentiation. Chondrogenic differen-
tiation was carried out using falcon25 static cell culture
system (specially fabricated in our lab for chondrocyte
differentiation). Cells were subjected to micromass cell
culture conditions to induce the chondrocyte differentiation
under chondrocyte differentiation medium (Invitrogen) for
30 days. One million MSCs were pelleted at 300 g and
chondrocyte differentiation medium was added without
disturbing the pellet. Media was changed every 48 hrs. After
differentiation, cells were fixed with 10% formalin, stained
with merchrome, and embedded in paraffin. Staining on
deparaffinized 5 μm sections staining for proteoglycans was
carried out using saffranin O and 3% alcian blue. After
staining, sections were rinsed with distilled water, air dried at
room temperature, immersed in xylene, and mounted using
DPX before observing under microscopy.

2.14. Osteogenic Differentiation. For osteogenic differentia-
tion, 5 × 104 cells were seeded per well in 24-well plate
containing osteogenic induction medium (Invitrogen) for 30
days, with media change every 48 hrs. After differentiation,
presence of extracellular calcium was confirmed by VonKossa
staining. For vonkossa staining, the cells were fixed in pre-
cooled methanol. After fixing, the cells were washed with
DPBS (W/O Ca2+ and Mg2+), treated with 5% silver nitrate
solution in water, and exposed to UV light for 1 hour under
the laminar hood. Stained cells were washed with water and
incubated with 5% sodium thiosulphate in water for 2 min
at room temperature. Finally, sample was rinsed with sterile
water and observed under the microscope for imaging.

2.15. Myotubule Differentiation. For myotubule differentia-
tion [14], 5× 104 placental MSCs were seeded in 25 cm2 flask

containing mesenchymal expansion medium with 3 μM 5-
azacytidine. The cells were cultured for 21 days with media
changes every 7 days. The cells were stained with Hoechst
33342 (5 μg/mL), incubated at 37◦C for 30 minutes before
observing under the microscope for imaging.

2.16. Tubular Assay. Matrigel (BD) was thawed at 4◦C for
overnight. 50 μL of matrigel was aliquoted per well of 96 well
plate using precooled tips. The plate was centrifuged at 300 g
for 5 min, 4◦C. Allowed to polymerize at 37◦C for 30 min.
MSCs at 1 × 105 cells/well were seeded in mesenchymal
expansion medium. Cells were incubated at 37◦C under
hypoxic condition for 6 hours before observing under the
microscope for imaging [15].

2.17. Neural Differentiation. To induced neuronal differen-
tiation [16], 5 × 105 placental MSCs were seeded onto
serum-free α-MEM containing 5 mM β-mercaptoethanol
and cultured for 6–9 hrs. The cells after induction were fixed
for immunostaining analysis.

2.18. Retinal Cell Differentiation. For Retinal differentiation
[17], 1 × 105 cells were seeded into media containing
Mesenchymal expansion medium supplemented with 50 μM
Taurine with 1 mM Beta-mercaptoethanol. The cells, were
cultured for 4 days with media changes every 4 days. After
retinal induction cells were collected in trizol for RT-PCR
analysis or fixed for immunostaining.

2.19. Pancreatic Progenitor Cell Differentiation. For pancre-
atic differentiation [12, 18, 19], 25 cm2 flasks were treated
with gelatin and 5 × 105 cells were seeded onto gela-
tinized dish containing mesenchymal expansion medium
with 10 mM nicotinamide and 1 mM β-Mercaptoethanol
for 24 hrs. Following preinduction, cells were treated with
Mesenchymal expansion medium without FBS but contain-
ing 10 mM nicotinamide and 1 mM β-Mercaptoethanol for
6 hours, and for following 18 hrs cells were treated with
induction media containing FBS. After differentiation, cells
were collected in trizol and subjected to RT-PCR analysis or
fixed for immunostaining.

2.20. Soft Agar Assay. For Soft agar assay [20], 0.6% agar
containing MEM was layered on the surface of 35 mm dish
(corning) and incubated in laminar hood for 30 min. Later, 2
× 104 MSCs were mixed with 0.3% agar containing MEM
and overlayed on the top of 0.6% agar layer. Plate was
incubated in hood for 20 minutes. Following incubation,
500 μL of Mesenchymal expansion medium was added and
incubated for 21 days. To the dish, 500 μL of fresh media was
added every 7 days once. HeLa cells were used as a positive
control.

2.21. Dithizone Staining. For Dithizone (STZ) Staining, the
cells were incubated with DTZ solution 100 μg/mL in α-
MEM media for 20 minutes at 37◦C. After staining, the
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cells were rinsed with twice with PBS and examined under
microscope [21].

2.22. Cell Population Doubling Time (Gt). Population dou-
bling time indicates the growth rate of the placental MSCs
[22], population doubling (PD)

PD = ln(Nf/Ni)
ln 2

, (1)

where ln equals natural logarithm, Nf equals final cell count,
Ni equals initial cell count

Gt = t

PD
, (2)

t = Time in hours after cell seeding.
Average Gt value was attained by adding the obtained

Gt values for different experiments divided by number of
experiments.

3. Results

3.1. Derivation of Adherent Fibroblast Like Mesenchymal
Stem Cells (MSCs) from Maternal Side of Human Placenta
and Immunophenotypic Characterization of Human Placental
MSCs. Enzyme-mediated fractionation of human termed
placenta resulted in derivation of fibroblast-like cells, which
are generally term placenta-derived multipotent mesenchy-
mal stem cells (PD-MSCs). Selection for MSCs rested on the
classic adhesion method on tissue culture plastic. Placental
MSCs from 8 term placental samples have been established
from maternal side lobules of human placenta following
trypsin digestion and collagenase-I treatment following
which samples were passed through the 100 μ filter and were
seeded in α-MEM containing 10% FBS, and adherent cell
population was then characterized for their proliferation
capabilities, cell cycle, apoptosis pattern, immunophenotypic
features, and differentiation capabilities. The isolated MSCs
formed a homogenous monolayer of adherent spindle-
shaped fibroblast-like cells. The protocol proved successful in
8 of 8 placental tissues collection. Plating of cell suspensions
from the first digest with trypsin did not produce any
colonies, but cell suspensions produced from final collage-
nase I digest of placental tissue fragments typically produced
MSC colonies of variable sizes that contained outgrowing
fibroblast-like cells. After initial plating of the cells, the
colonies became visible after 7 days. These MSC colonies in
turn started to proliferate steadily, the flask was almost 60–
70% confluent and ready for splitting by day 14. Typically,
approximately 5–6 × 104 cells were obtained within 12–
14 days after plating. Following the process of initiation
the flasks were subjected to trypsinization in 1 : 2 or 1 : 3
ratio. The 75 cm2 at 1 : 2 splitting was subconfluent by day
3, indicating these isolated cells had very rapid proliferating
capacity. Outgrowing cells when harvested and replated in
higher dilutions rapidly formed secondary colonies from sin-
gle cells (Figures 1(a) and 1(b)). PD-MSCs were expandable
up to passage 25–30 (as far as we cultured) without any

changes in the morphological characteristics (Figures 1(c)
and 1(d)) and were amenable to routine cryopreservation,
thawing and differentiation protocols. The MSCs were
characterized using flow-cytometry-based positive reaction
for mesenchymal lineage surface markers CD29+, CD73+,
CD90+, CD105+; and negative for hematopoietic marker
CD34−, CD45−, also negative expression of CD14−, HLA
DR−; was used to define MSCs (Figures 1(c), 1(d), and 1(e)).
Flow cytometry revealed very little scatter in the phenotypic
marker profile of placenta-derived isolates between all 8
cases, also population doubling time calculated were not
significantly altered. The expression profile confirmed to the
criteria generally defined for multipotent mesenchymal stem
cells [23].

3.2. Plasticity of MSCs. Specific induction of differentiation
was investigated with PD-MSCs, one early, one mid, and one
late passage from all 8 subjects. This confirmed that the mes-
enchymal stemness profile by PD-MSC populations indeed
associated with the ability to generate different mesodermal
lineage cell types on their exposure to soluble growth and
differentiation factors in vitro. At the same time, when sub-
jected to translineage differentiation MSC shows remarkable
plasticity to differentiate into ectodermal (neuronal cells,
retinal cells) and endodermal lineage (pancreatic beta cells).
Subconfluent culture was found critically important to main-
tain the stemness phenotype of PD-MSCs during expansion.
The phenotypic profile of PD-MSCs when subcultured at
50–70% cell density remained unaffected, also maintained
their initial marker profile and their ability to differentiate
as well. MSCs can be differentiated into cells from all the
three germ layers under suitable supplementary conditions in
vitro. The figures display representative results of adipogenic
(Figure 2 (a)), osteogenic (Figure 2 (b)), and chondrogenic
(Figures 2 (c), and 2 (d)) differentiation assays, visualizing
large lipid vacuoles, mineralized bone with calcium deposits
and saffranin O positive collagen matrix respectively. These
adipogenesis, osteogenesis, and chondrogenesis along with
myotubule formation (Figure 2 (e)) and endothelial cells
tubular assay (Figure 2 (f)) indicates the ability of the MSC
to differentiate into mesodermal cell lineage. Moreover,
reports are available on MSC culture in presence of the
angiogenic growth factor VEGF induced expression of CD34,
which is a marker of hematopoietic, as well as endothelial,
precursors [35]. Figure also shows neurogenesis (Figures 2
(g), 2 (h), 2 (i), 2 (j), and 2 (k)) and retinal cell (Figure 2 (l))
differentiation which exhibits the ectodermal differentiation
capacity of MSCs. Further, differentiation in pancreatic beta
cells indicates (Figure 2 (m)) the endodermal differentiation
capacity of placental MSCs. Also, RT-PCR amplification of
calbindin2 and recoverin genes shows (Figure 2 (n)) retinal
(ectodermal lineage) differentiation, and pancreatic amylase
gene (Figure 2 (n)) was also amplified after pancreatic beta
cell induction.

3.3. Extensively Passaged Placenta-Derived MSC Does Not
Significantly Alter the Cell Cycle or Apoptotic Pattern While
Maintaining the Normal Karyotype. In the next set of
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Figure 1: Morphology and characteristics of placental MSCs. (a) morphology of the placental MSCs at passage 5; (b) morphology of the
placental MSCs at passage 25; (c) flowcytometric analysis of Placental MSCs at passage 5; (d) flowcytometric analysis of Placental MSCs at
passage 25; (e) RT-PCR analysis of placental MSCs (PhMSCs 020P3) for MHC class II antigens.
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Figure 2: Pluripotency property of placental MSCs. (a) Oil red O staining (PhMSCsP5); (b) Von Kossa staining (PhMSCsP10); (c) “Falcon
25” static micromass cell culture system for chondrocyte differentiation; (d) saffranin O staining (PhMSCsP5); (e) hoechst 33342 staining
of myotubules; (f) tubular assay; (g) neural differentiation of placental MSCs (PhMSCsP20); (h) map2 staining (PhMSCs021P15); (i) NeuN
staining (PhMSCsP15); (j) GFAP staining (PhMSCs021P15); (k) Neural filament staining (PhMSCsP15); (l) Retinal cell differentiation of
placental MSCs (PhMSCsP9); (m) Pancreatic progenitor cell differentiation of placental MSCs (PhMSCsP9) (n) dithizone (DTZ) positive
pancreatic progenitor cells; (o) PCR analysis of ectodermal lineage (photoreceptor genes calbindin2 and recoverin) and endodermal lineage
(pancreatic amylase gene).

experiments after propidium iodide staining, we tested MSC
cell cycle status; Figure 3(a) shows during early and late
passaging there was not significant change in the cell cycling
process. As detailed in Figure 3(b), karyotypes were normal
46, XX in all test samples. Chromosome number was found
normal in all analyzed PD-MSC isolates (n = 8). Looking
at maternal origin, we found that PD-MSC isolates obtained
with our isolation procedure were always of maternal origin.
Also, it was important to document the apoptosis pattern of
the each passage proliferating MSC; Annexin-V and 7AAD
stainning did not show (Figure 3(c)) significant change in the
percentage apoptotic cells (∼5–7% cells).

3.4. Placental MSCs Displays Higher Endogenous Gene Expres-
sion of Oct4, Sox2 and Nanog Compared to BM-Derived MSC.
FACS analysis by Oct3/4, Stro-1 antibodies did show positive
reaction. Next, we wanted to analyze the pluripotency-
associated endogenous gene expression profiles of PD MSCs
and bone-marrow-derived MSC (BM-MSC). Figure 4 shows
data from comparative real-time qPCR, which revealed
higher expression levels of Oct4, Sox2, and nanog compared
to BM-MSC. Reports are also available of flow cytometry
and immunocytochemistry, which revealed that PD-MSCs
were positive for stage-specific embryonic antigen SSEA-3
but negative for SSEA-4 [11].
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Figure 3: Cell cycle karyotype analysis: (a) cell cycle pattern of early (passage 5) and late passage (passage 20). PD-MSC were analyzed
by FACS after propidim iodide staining. (b) Karyotype analysis was performed on early (passage 5) and late (passage25) passage MSC. (c)
Apoptosis analysis was done by FACS using Annexin V and 7AAD. (i). negative control. (ii) Total % apoptotic MSC cells (Passage 5). (iii) %
apoptotic cells (Passage 24) (iv).positive control.
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3.5. In Vitro Tumor-Genesis Detection Assay. Placental MSCs
when subjected to soft agar assay did not yield tumoroids
even after 4 weeks of in vitro culture in soft agar assay
(Figure 5). However, HeLa cells began to form aggregates
within 7 days, and many bigger colonies were formed at the
end of day 21 (Figure 5).

4. Discussion

The human embryonic stem cells (ESCs) have the potential
to differentiate into all the three cell lineages [24]. However,
some of the practical and ethical concerns render them
in usable for day-to-day clinical applications. Nonetheless,
extra embryonic tissues can be effectively used to isolate
pluripotent stem cells. Placenta is one of the extra embryonic
organs that has rich source of progenitor or stem cells
[25]. Placenta has two sides; one is foetal side consisting of
amnion and chorion and other is the maternal side consisting
of deciduas [24]. Mesenchymal stem cells (MSCs) isolated
from maternal side of human term-placenta represent an
important cell type for stem cell research and clinical
therapy not only because of their ability to differentiate
into mesodermal lineage cells, such as osteocytes, chon-
drocytes, muscle, or endothelial cells [2], but also for
their remarkable translineage differentiation capabilities like
neuronal cells, retinal cells (ectodermal), and pancreatic beta
cells (endodermal lineage). In addition, they secrete large
amounts of proangiogenic and antiapoptotic cytokines [26]
and possess remarkable immunosuppressive properties [27].
MSCs have been derived from many different organs and
tissues [28]. Evidence has emerged that different parts of
human placenta, umbilical cords and amniotic membrane,

as well as umbilical cord blood harbor MSC [29–32]. These
tissues are normally discarded after birth, avoiding ethical
concerns [23] Mechanical, as well as enzymatic, methods
for MSC isolation from different regions of human placenta
of different gestational ages have been reported in literature
[29, 33–47]. Knowledge about vitality, average population
doubling time, stable karyotype, cell cycle and apoptosis
pattern, phenotype, and expandability of such placenta-
derived MSC isolates is a prerequisite for therapeutic appli-
cation; however, systematic investigations into reliability of
this MSC source and phenotypic stability did not get that
much attention. Furthermore, reports on placenta-derived
MSCs often lack information about the cell cycle, apopto-
sis pattern, progenitor-specific endogenous gene-expression
profile, and karyotype of the cell isolates. In this paper, we
describe enzymatic fractionation of term-human placenta
that facilitates recovery of oligo-lineage, fibroblast-like cells,
which generally are termed as placenta-derived mesenchymal
stem cells (PDMSCs) with high fidelity. As demonstrated
by cell cycle or apoptosis analysis of cells from early as
well as late passages; with average unaltered population
doubling time, PD-MSC did not shows significant variations
in either cell cycle or apoptosis pattern. Also, genotypic
analyses of cell isolates from most of placental tissues were of
maternal, not fetal, origin. Our systematic characterization
of cell isolates from multiple cases showed that these cell
isolates reproducibly fulfill the general definition of MSCs
by both phenotypic and differentiation capabilities criteria.
[24]. We demonstrate that maternally derived PD-MSCs
can be greatly expanded, do not alter significantly change
their cell cycle or apoptosis pattern, show pluripotency-
associated endogenous gene expression, and maintain their
differentiation capacity and stable phenotype displaying
unaltered kayotype up to passage 25–30 passages. In these
experiments, the placental MSCs were isolated from the
cotyledons present in the maternal side of the placenta.
Our method of cell isolation by way of sequential digestion
of the trophoblast cell layer with trypsin and following
digestion of remaining placental tissue with collagenase I
proved very effective for obtaining PD MSCs. Outgrowth
of PD-MSCs from collagenase I digests was successful in
8 of 8 placental tissues and resulted in populations with
remarkably little scatter in their MSC profiles, between
subjects. As for propagation, we found out that PD-MSCs
must be propagated in subconfluent culture to maintain their
MSC profile, because confluent culture led to gradual loss of
MSC identity. With proper subconfluent passage, PDMSCs
maintained their phenotypic MSC profile up to 30 passages.
The flow cytometry studies indicate there is significant
similarity in surface marker characteristics from passage
1 till passage 30. Microscopic observations revealed that
placental MSCs proliferate rapidly till passage 30 without
compromising on the morphological features and quality
of the mesenchymal stem cell properties like cell cycle and
apoptosis pattern, pluripotency-associated endogenous gene
expression, and normal karyotype.

The characteristic data beyond passage 30 has not been
tested in this study. The MSCs had spindle shaped fibroblast
morphology. The absence of HLA DRα and HLA DRβ1
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Figure 5: Soft agar assay. (a)Placental MSCs day 7; (b) HeLa cells day 7; (c) Placental MSCs day 21; (d) HeLa cells ay21.

expression, analyzed from RT-PCR, results indicate that
placental MSCs could be effectively used for both autologous
and allogenic transplantations. The rate of differentiation of
MSCs is much quicker, efficient and scalable when compared
to ES cells. The soft agar assay indicates that isolated placental
MSCs do not possess any malignant property. Several animal
as well as human trials have indicated that use of MSCs unlike
ES cells does not lead to the formation of teratomas in vivo
[24]. In addition, usage of term placental MSCs has fewer
ethical concerns since they are isolated from foetal tissues
that anyway would have been discarded.

5. Conclusion

The human term-placenta is relatively easily available and
attracts less ethical concerns. Placental tissue constitutes
a robust source of MSC. In this study, we investigated
several parameters, namely, (1) chromosome number, (2)
pluripotency associated gene expression, (3) maternal origin,
(4) sequential enzymatic digestion (trypsin followed by
collagenase) as methods of isolation, (5) cell propagation,
cell cycle, and apoptosis pattern, that are important for their
principal utility for cell-based therapy and could influence
their proliferative, as well as differentiation, capacities. Based
on the results, we conclude that the abundance of pluripotent
cells, rapid proliferation, stable karyotype, plasticity and
immunomodulatory property make placental MSCs ideal
choice for clinical and tissue engineering applications. Nev-
ertheless, the main drawback of using MSCs is that, a panel of
surface markers are required for characterization of isolated
MSCs for their homogeneity. Further, unlike the adult
MSCs, where significant numbers of human clinical trials are

underway, use of placental MSCs in clinical applications is
relatively new. Additional studies are required to substantiate
the use of placental MSCs in medical applications.

Conflict of Interests

The authors declare no conflict of interests.

Acknowledgments

The authors appreciate encouragement and support extend-
ed by all students and staffs of CSCR and CMC in carrying
out the research work successfully. they express their grat-
itude to Department of Biotechnology for Ramalingaswami
fellowship to Sanjay Kumar and research support grant (DBT
Grant no. BT/PR15420/MED/31/122/2011), Government of
India.

References

[1] P. Bianco, P. G. Robey, and P. J. Simmons, “Mesenchymal stem
cells: revisiting history, concepts, and assays,” Cell Stem Cell,
vol. 2, no. 4, pp. 313–319, 2008.

[2] S. Kumar, D. Chanda, and S. Ponnazhagan, “Therapeutic
potential of genetically modified mesenchymal stem cells,”
Gene Therapy, vol. 15, no. 10, pp. 711–715, 2008.

[3] D. C. Ding, W. C. Shyu, and S. Z. Lin, “Mesenchymal stem
cells,” Cell Transplantation, vol. 20, pp. 5–14, 2011.
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[32] K. Bieback, S. Kern, H. Klüter, and H. Eichler, “Critical
parameters for the isolation of mesenchymal stem cells from
umbilical cord blood,” Stem Cells, vol. 22, no. 4, pp. 625–634,
2004.

[33] A. J. Marcus and D. Woodbury, “Fetal stem cells from extra-
embryonic tissues: do not discard: stem cells review series,”
Journal of Cellular and Molecular Medicine, vol. 12, no. 3, pp.
730–742, 2008.

[34] V. L. Battula, S. Treml, H. Abele, and H. J. Bühring, “Prospec-
tive isolation and characterization of mesenchymal stem cells
from human placenta using a frizzled-9-specific monoclonal
antibody,” Differentiation, vol. 76, no. 4, pp. 326–336, 2008.

[35] C. M. Chang, C. L. Kao, Y. L. Chang et al., “Placenta-
derived multipotent stem cells induced to differentiate into
insulin-positive cells,” Biochemical and Biophysical Research
Communications, vol. 357, no. 2, pp. 414–420, 2007.

[36] C. C. Chien, B. L. Yen, F. K. Lee et al., “In vitro differentiation
of human placenta-derived multipotent cells into hepatocyte-
like cells,” Stem Cells, vol. 24, no. 7, pp. 1759–1768, 2006.

[37] Y. Fukuchi, H. Nakajima, D. Sugiyama, I. Hirose, T. Kitamura,
and K. Tsuji, “Human placenta-derived cells have mesenchy-
mal stem/progenitor cell potential,” Stem Cells, vol. 22, no. 5,
pp. 649–658, 2004.



Stem Cells International 11

[38] O. Genbacev, A. Krtolica, T. Zdravkovic et al., “Serum-free
derivation of human embryonic stem cell lines on human
placental fibroblast feeders,” Fertility and Sterility, vol. 83, no.
5, pp. 1517–1529, 2005.

[39] K. Igura, X. Zhang, K. Takahashi, A. Mitsuru, S. Yamaguchi,
and T. A. Takahashi, “Isolation and characterization of
mesenchymal progenitor cells from chorionic villi of human
placenta,” Cytotherapy, vol. 6, no. 6, pp. 543–553, 2004.

[40] P. S. In’t Anker, S. A. Scherjon, C. Kleijburg-Van Der Keur et
al., “Isolation of mesenchymal stem cells of fetal or maternal
origin from human placenta,” Stem Cells, vol. 22, no. 7, pp.
1338–1345, 2004.

[41] Z. Miao, J. Jin, L. Chen et al., “Isolation of mesenchymal stem
cells from human placenta: comparison with human bone
marrow mesenchymal stem cells,” Cell Biology International,
vol. 30, no. 9, pp. 681–687, 2006.

[42] A. Poloni, V. Rosini, E. Mondini et al., “Characterization
and expansion of mesenchymal progenitor cells from first-
trimester chorionic villi of human placenta,” Cytotherapy, vol.
10, no. 7, pp. 690–697, 2008.

[43] Z. Strakova, M. Livak, M. Krezalek, and I. Ihnatovych,
“Multipotent properties of myofibroblast cells derived from
human placenta,” Cell and Tissue Research, vol. 332, no. 3, pp.
479–488, 2008.

[44] B. L. Yen, H. I. Huang, C. C. Chien et al., “Isolation of
multipotent cells from human term placenta,” Stem Cells, vol.
23, no. 1, pp. 3–9, 2005.

[45] X. Zhang, A. Mitsuru, K. Igura et al., “Mesenchymal pro-
genitor cells derived from chorionic villi of +human placenta
for cartilage tissue engineering,” Biochemical and Biophysical
Research Communications, vol. 340, no. 3, pp. 944–952, 2006.

[46] X. Zhang, Y. Soda, K. Takahashi et al., “Successful immortal-
ization of mesenchymal progenitor cells derived from human
placenta and the differentiation abilities of immortalized
cells,” Biochemical and Biophysical Research Communications,
vol. 351, no. 4, pp. 853–859, 2006.

[47] S. Barlow, G. Brooke, K. Chatterjee et al., “Comparison
of human placenta- and bone marrow-derived multipotent
mesenchymal stem cells,” Stem Cells and Development, vol. 17,
no. 6, pp. 1095–1107, 2008.



Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Anatomy 
Research International

Peptides
International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation 
http://www.hindawi.com

 International Journal of

Volume 2014

Zoology

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Molecular Biology 
International 

Genomics
International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Bioinformatics
Advances in

Marine Biology
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Signal Transduction
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

BioMed 
Research International

Evolutionary Biology
International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Biochemistry 
Research International

Archaea
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Genetics 
Research International

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in

Virolog y

Hindawi Publishing Corporation
http://www.hindawi.com

Nucleic Acids
Journal of

Volume 2014

Stem Cells
International

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Enzyme 
Research

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Microbiology


