
Role of Molecular Genetics in Hemophilia: From
Diagnosis to Therapy
Giridhara Rao Jayandharan, Ph.D. 1 Arun Srivastava, Ph.D. 2 Alok Srivastava, M.D. 1

1Department of Hematology/Centre for Stem Cell Research, Christian
Medical College, Vellore, India

2Division of Cellular and Molecular Therapy, Department of Pediatrics,
University of Florida College of Medicine, Gainesville, Florida

Semin Thromb Hemost 2012;38:64–78.

Address for correspondence and reprint requests Giridhara Rao
Jayandharan, Ph.D., Department of Haematology/Centre for Stem Cell
Research, Christian Medical College, Vellore-632004, Tamil Nadu, India
(e-mail: jay@cmcvellore.ac.in).

Hemophilia A and hemophilia B are X-linked bleeding disor-
ders caused by a deficiency in blood coagulation factor (F) VIII
or FIX, respectively. The disease has an incidence of 1 in 5000
and 1 in 25,000 male births, respectively, with a prevalence of
approximately half-a-million people worldwide. No ethnic or
geographic predisposition has been defined.1 Both F8 and F9
genesmap to the long armofX chromosomeatXq28 andXq27,
separated by 35cM.2–4 While the F8 gene has 26 exons
spanning 186 kb,5 the F9 gene is relatively smaller (34 kb),
and has 8 exons3 (►Fig. 1). Mutations in both these genes (F8,
n� 2179; F9, n� 1097) including a variety of deletions,
insertions, missense, nonsense, and splice-site mutations,
apart from the common intron 1 and intron 22 inversions in
the F8gene, havebeen reported to cause the clinical phenotype
(HGMD®, Human Gene Mutation Database. http://www.
hgmd.cf.ac.uk/ac/gene.php?gene¼ F8; http://www.hgmd.cf.
ac.uk/ac/gene.php?gene¼ F9).

Molecular genetic diagnosis of this condition remains an
important and integral part of its evaluation. Apart from
helping our understanding of the functional biology of these
two genes, this information is useful for genotype–phenotype
correlations as well as understanding the basis of inhibitor
development or for newer approaches of hemophilia therapy
such as development of newer clotting factor concentrates
and gene therapy. This article reviews the applications of
molecular genetics in hemophilia, in general, and how such

techniques can be useful for optimizing patient care, in
particular.

Inheritance of Hemophilia

There is a 50% chance that a carrier mother will transmit the
defective X-linked gene to themale or female child. All female
offspring born to a hemophilic father are obligatory carriers
(►Fig. 2). To identify the females at risk of being a carrier, it is
important to understand the inheritance. Sporadic cases
result from de novo mutations. Apart from assessing levels
of FVIII coagulant (FVIII:C), molecular genetic analysis is
required to reliably determine carrier status. However, one
needs to consider the potential risk of somatic mosaicism in
families with sporadic hemophilia (�10%), as it causes uncer-
tainty about the recurrence risk in parents who appear to be
noncarriers. In this situation, conventional mutation detec-
tion procedures may fail to detect the underlying genetic
defect if the proportion of mutated alleles is<5% of wild-type
allele background.6

Approach to Genetic Diagnosis

There are two different approaches to the genetic evaluation
of hemophilia. Analysis of single-nucleotide polymorphism
(SNP) or microsatellite variable number tandem repeat
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Abstract Despite significant advancements, state-of-the-art care remains inaccessible to patients
with hemophilia, especially those from developing countries. Thus, innovative ap-
proaches in the management of this condition are needed to improve their quality
of life. In this context, genetic studies in hemophilia have contributed to the better
understanding of its biology, the detection of carriers, and prenatal diagnosis, and even
fostering newer therapeutic strategies. This article reviews the applications ofmolecular
genetics in hemophilia, in general, and how such techniques can be useful for
optimizing patient care, in particular.
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(VNTR) markers in the F8 or F9 gene to track the defective X
chromosome in the family (linkage analysis) or identification
of the disease causing mutation in the defective F8 or F9 gene
(direct mutation detection) are employed.7,8 Before embark-
ing on genetic diagnosis, it is imperative that detailed clinical
evaluation and factor assays be available. Postgenetic test
counseling for the family is also an important part of genetic
testing to help the family make an informed choice for their
childbirth. For linkage analysis, DNA samples are required
from the affected patient(s) and the parents to understand
the inheritance pattern. For direct mutation detection, DNA
samples are required from the proband and anyother affected
patient in the family, if available, to improve the accuracy of
diagnosis.

Linkage Analysis
SNP are commonly detected by polymerase chain reaction
(PCR) amplification of the target site followed by restriction
fragment length polymorphism7 whereas VNTR are detected
by conventional polyacrylamide gel electrophoresis9 or by
fluorescent PCR and capillary electrophoresis.10 The key
requirement for linkage analysis is the heterozygosity of
the polymorphic marker in the mother of the index case.

This requires a strategy for sequential analysis of different
polymorphisms in F8 or F9 genes depending on heterozygos-
ity rates in the population.

Although the principle on which linkage analysis is
applied to hemophilia A and hemophilia B is similar, the
severity of hemophilia A in the pedigree influences the
diagnostic strategy employed. Many laboratories11–13 in
developing countries use linkage analysis following long
PCR detection of two common mutations in the F8 gene,
the intron 1 or intron 22 inversions caused by a homolo-
gous recombination with one of their two extragenic
copies.14,15 These inversions constitute the molecular basis
for hemophilia A in �45 to 50% of patients with severe
disease.16 In inversion negative cases and in patients with
moderate or mild hemophilia A, several polymorphisms in
the F8 gene may be tracked (►Fig. 3).16 Some of these
polymorphisms such as HindIII/BclI are in linkage disequi-
librium thereby reducing the overall informativity of this
approach. However, the use of two VNTR together with
HindIII and XbaI biallelic polymorphisms allows gene track-
ing in up to 80% families.8 In studies performed in Indian
population, XbaI has been identified as the most informa-
tive marker (70%) for linkage analysis followed by HindIII

Figure 1 Organization of human factor 8 and factor 9 genes. Factor 8 gene is 186 kilobases (kb) in length and encodes a messenger RNA of �9 kb.
The newly synthesized factor VIII protein molecule is composed of a presequence of 19 amino acids and amature peptide of 2332 amino acids. The
mature multidomain factor VIII protein contains triplicated A domains, duplicated C domains, and a single B domain. The arginine residues, which
are the sites for proteolytic activation, are R372, R740, R1689. Activated factor VIII is a heterotrimer in which the dimeric N-terminal heavy chain is
held together with the monomeric C-terminal light chain by a metal ion bridge (Ca2 þ ). Factor 9 is 1/6th the size of factor 8 gene, � 34 kb and
encoding a transcript of �1.4 kb. The mature factor IX protein consists of a pre- and pro-sequence and a mature peptide of 415 amino acids (total
length, 461 amino acids). Activated factor IX has an N-terminal light chain and a C-terminal heavy chain held together by a disulphide bridge
between cysteine resides 132 and 279. GLA, “GLA” domain, in which 12 glutamic acid residues undergo post-translational gamma-carboxylation
by a vitamin K-dependent carboxylase; EGF, epidermal growth factor-like domain; activation peptide released after proteolytic activation at
arginine 145 and arginine 180; catalytic, the serine protease domain responsible for cleavage of factor X to Xa.
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(60%), intron 13 CA repeats (57%), intron 22 CA repeats
(50%), DXS52 VNTR (23%), and intron 7 G!A polymorphism
(7%) in F8 gene. The combined use of these markers is
informative in 92% of hemophilia A families.10 Based on
these data a comprehensive algorithm for linkage analysis
of hemophilia A has been proposed (►Fig. 4). For linkage
analysis in hemophilia B, the polymorphisms studied in the
F9 gene are detailed in ►Fig. 3.16 By combining three
markers, namely, DdeI/intron 1, XmnI/intron3, and HhaI/
3′UTR in F9 gene a cumulative informativeness of 80% may
be achieved.16

The feasibility of this approach is restricted by several
factors. These include the requirement of multiple members
including one affected member from the same family and the
significant chance (�1%) of an erroneous result frompotential
recombination between the mutant gene and polymorphic
site. The approach may be diagnostic in only �85 to 90% of
families. In view of considerable ethnic and geographical
variation in the allele frequencies of these polymorphisms,7

it is necessary to establish the informativeness of these
polymorphisms in different populations.8,17 Varying repeat
lengths attributed to DNA polymerase slippage could occur
between generations within a family.18 Therefore microsat-

ellite data should be interpreted with caution in a linkage
study. Despite its drawbacks, linkage analysis is widely used
in developing countries.

Direct Mutation Detection
Direct detection of disease causing mutation has a near
100% accuracy and is informative in over 95% of families
with hemophilia A and hemophilia B.17 It is equally effi-
cient and sensitive in detecting mutations in both familial
and sporadic hemophilia, even in the absence of a proband.
In �45 to 50% cases with severe hemophilia A, two
common inversions at intron 1 or intron 22 are detected,16

and therefore are first screened by PCR-based protocols
either before linkage analysis or the point mutation screen-
ing in most laboratories.

The strategy employed for point mutation screening in-
cludes amplification of the F8 or F9 gene (exonic and their
flanking intronic regions, the 5′UTR and 3′UTR) by PCR
followed by detection of mutations by various screening
methods or/and DNA sequencing. For the F9 gene, this is
easier as it has only 8 exons, the largest of which is less than 2
kb. In contrast, the large size and complexity of the F8 gene
necessitates amplifications of genomic DNA in over 30 frag-
ments to cover the target regions.19 Variousmutation screen-
ing techniques can be used to screen PCR products of F8 or F9
genes, such as single-strand conformation polymorphism,20

denaturing gradient gel electrophoresis,21 conformation-
sensitive gel electrophoresis (CSGE),19 and denaturing high
pressure liquid chromatography22 with sensitivities ranging
from80 to 98%. Abnormal PCR product profiles are sequenced
to identify the nucleotide change. Modification of these
mutation screening methods such as multiplexing of ampli-
fication reactions and CSGE (�13 vs. 33 PCR reactions for
larger genes such as F8) has been described (►Fig. 5),23,24

which has significantly reduced the cost and time for direct
mutation screening in hemophilia and also in other disorders
of hemostasis.25 However, with the declining cost of DNA
sequencing reagents the adoption of direct nucleotide se-
quence analysis is becoming a viable option even for service
laboratories.26 Indeed, because of limited number of tests
that are involved in genetic testing, it can be easier to set up
reliable genetic testing service as opposed to tests of
hemostasis.

One also needs to be cautious with the use and interpre-
tation of mutation data. Despite the utility and superiority of
direct mutation detection, a disease-causing mutation is not
identified in the F8 gene in� 5% of cases with hemophilia A,27

affecting genetic diagnoses in these families. The genotype–
phenotype correlation of novel mutations identified is chal-
lenging, but can be generally predicted (►Fig. 6). It must be,
however, noted that establishing the causality of a novel
missense mutation relies mostly on a series of candidate
explanations based on their effect on the structure of FVIII/
FIX proteins and location, their evolutionary conservation
between species as well as in related proteins and their
absence in the general population.28 Some patients can also
have two independent causative mutations (K1439fs;
R1966Q) as described in a patient with familial hemophilia

Figure 2 X-linked inheritance in hemophilia: The inheritance is shown
in families where either mother is a carrier (A) or the father is a
hemophilic patient (B).
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A with one being a de novo mutation.29 Such instances
increase the likelihood of erroneous data reporting. Recent
studies have also demonstrated that missense mutations
within B domain of FVIII other than those at glycosylation
or protease cleavage sites may not be causative of hemophil-
ia.30 This illustrates the importance of expression studies for
ascribing causality of novel missense substitutions, a tech-

nology that is impractical to follow in the setting of a service
laboratory.

Advances in Molecular Screening
DNA microarray-based approach for the screening of muta-
tions in hemophilia A31 and hemophilia B,32 and real-time
PCR (Light Cycler™, Roche Applied Science, Indianopolis, IN)

Figure 3 Commonly used polymorphic markers in factor 8 (A) or factor 9 (B) genes for linkage analysis. Factor 8 gene intron 7 G/A, intron 13 (CA)n,
intron 18 BclI, intron 19 HindIII, intron 22 XbaI, intron 22 MspI, intron 22 (CA)n, intron 25 BglI are shown. Factor 9 gene 5′ MseI, intron 1 DdeI,
intron 3 XmnI, intron 4 TaqI, intron 4 MspI, exon 6 MnlI, and 3′ HhaI are shown.

Figure 4 Algorithm for linkage analysis of hemophilia A in India (Adapted from Jayandharan et al, 2004.10) Families are first screened for the
common intron 22 and intron 1 inversion mutation in factor 8 gene. In inversion negative families, sequential analysis of the polymorphic markers
is performed. Using this strategy, genetic diagnosis can be offered to �90% of families.
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for determining carrier status in families with gross deletions
in F8 gene have been described.33 These choices reflect the
fact that there are many options for post-PCR product analy-
sis. However, all these need further evaluation and validation
before clinical application.

Quality Assurance in Genetic Testing

With a steady growth in the number of laboratories that offer
genetic tests for hemostatic disorders worldwide and in the
absence of international frameworks to regulate them, labo-
ratories rely largely on various internal quality control and
external quality assessment and proficiency testing programs
tomaintain the quality and integrity of their reporting data.34

In countries such as in the United Kingdom, proficiency
testing for the diagnosis of hemophilia is offered by the
National External Quality Assessment Scheme (UK-NEQAS)
and similar programs also exist in most developed countries
from North America, Western Europe as well as in

Australia.35–38 Participation in such programs is mandatory
for laboratory certification in these countries. However,
except for data from a few laboratories, a significant gap
exists in knowledge about the practices of molecular genetic
testing laboratories across the world. To address this, we
initiated a questionnaire survey among laboratories in both
the developing and developed countries including partici-
pants from Argentina, Australia, Belgium, Brazil, Canada,
China, Germany, India, Italy, Japan, Netherlands, Thailand,
and United Kingdom (n¼ 19).39 Our data showed consider-
able differences in the personnel standards in these laborato-
ries while surprisingly, the type and number of tests offered
did not vary considerably among them (►Table 1). However,
examination of the quality assurance practices in the sur-
veyed laboratories showed wide variability in laboratory
practices during the preanalytical, analytical, and postana-
lytical stages of genetic testing.39 Only 43% of laboratories in
developing countries (vs. 100% in developed countries) par-
ticipated in any kind of proficiency testing program (►Fig. 7).
We have initiated an External Quality Assessment Scheme
(EQAS) for molecular genetic analysis of hematological dis-
orders for laboratories in India since 2006.39 Two surveys are
conducted each year. Nine laboratories currently participate
in the program for thrombophilia (100%), hemophilia A (44%),
and hemophilia B (55%) modules. Eight External Quality
Assessment (EQA) cycles have been completed and their
details are provided in ►Table 2. For genetic testing of
hemophilia, linkage analysis was most commonly used
with only one laboratory performed direct mutation analysis
using CSGE and DNA sequencing. All laboratories performing
hemophilia B genetic testing used CSGE and DNA sequencing.
Response rate for this EQA schemes are between 70 and 80%.
In the last two cycles, a reporting accuracy of over 90% was
noted for thrombophilia mutations while it was �70% for the
hemophilia genetic testing. A performance report is provided
to all participants. Our experience suggests that EQAS for
genetic tests can be effectively established in developing
countries and efforts should be made to increase the aware-
ness and benefits of voluntary participation in such programs.

Genetic Basis for the Phenotypic
Heterogeneity in Severe Hemophilia

Patients conventionally classified as having severe hemophil-
ia (<1% of normal clotting activity) usually have 15 to 35
spontaneous joint and muscle bleeds per year without any
treatment.40–42 The vast majority (60–70%) of patients with
hemophilia falls into this group. However, within this group,
there is considerable heterogeneity in clinical presentation. A
subset of these patients (10 to 15%) with severe hemophilia
have clinically mild disease.41–44 Variations in the bleeding
frequency, age at first bleeding, and extent of joint damage
have all been reported in patients with severe hemophilia by
many groups.41–47 Though such phenotypic heterogeneity is
intriguing, only a few studies have attempted to address its
basis. Factors, such as varying levels of FVIII:C activity (below
1%),48,49 pharmacokinetics of the replaced clotting factor
concentrate,50 the type of mutation, and the concomitant

Figure 5 Direct mutation screening by multiplex polymerase chain
reaction (PCR) and conformation sensitive gel electrophoresis. Fol-
lowing its isolation from peripheral blood, genomic DNA from patients
and normal control are amplified for factor 8 or factor 9 gene coding
and flanking intronic regions by a multiplex PCR. For multiplex PCR,
amplifications with identical annealing temperatures but producing
different fragment sizes were grouped together (F8¼ 13 groups, F9¼
4 groups). These amplicons are then screened by conformation
sensitive gel electrophoresis (CSGE) a heteroduplex based mutation
screening method that relies on the differential migration of DNA
heteroduplexes in comparison with homoduplexes during polyacryl-
amide gel electrophoresis under mildly denaturing conditions. Finally,
PCR fragments displaying heteroduplexes are screened by DNA se-
quencing to confirm the nature of nucleotide change. A representative
gel picture for multiplex PCR group 3 of factor 8 gene is shown in this
figure.
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presence of prothrombotic factors51–53 have been reported to
impact the phenotype of severe hemophilia (►Table 3).54

Our clinical observations among minimally treated pa-
tients with severe hemophilia has revealed two types of
heterogeneity as described earlier.55 The first relates to the
frequency of bleeding as is commonly recognized and it is
likely that the balance of hemostasis factors determines this
(the hemostasis component). The second relates to the degree
of synovial reaction and the extent of damage to joint carti-
lage among those who bleed frequently (the vascular and
inflammatory component). There are some patients who
develop serious arthropathy even with a moderate number
of bleeds while there are others who maintained good joints
in spite of many bleeds (►Fig. 8). We therefore hypothesized
that differences in the overall hemostatic potential and the
vascular inflammatory responses impact this variation. Sub-
sequently, our data showed that apart from the primary
disease causing mutations in F8 or F9 genes, an Arg353Gln
functional polymorphism in F7 gene and the coinheritance of
interferon gammaþ 874G>A polymorphism may contribute
to this phenotypic variation.56,57 However, the data need to
be substantiated in larger and diverse groups of patients in a
multicenter setting, especially when the classification of
milder phenotype of severe hemophilia is not uniform across
the literature.55 Apart from such studies, it is also crucial to
identify other molecular and cellular determinants that con-
tribute to hemophilic arthropathy, to reveal targets for inter-

vention and to design potential treatment strategies to
prevent or delay the onset of blood-induced arthropathy.

Inhibitor Development

The development of inhibitors to FVIII/FIX represents a major
therapeutic problem in the treatment of hemophilia. Fortu-
nately, and for reasons that are largely unexplained, the
incidence of inhibitors to FIX, 3 to 5%, is significantly less
than those to FVIII where figures of 30% are now well
substantiated.58–60 The propensity for inhibitor development
has at least two genetic components, one of which relates to
the type of clotting factor genemutation and the other(s) that
likely involves elements of the immune system. In case of
hemophilia A and hemophilia B, patients who carry a severe
molecular defect (large deletions, inversions, and nonsense
mutations) that result in the complete absence of the coagu-
lant protein seem to have a higher propensity to develop
inhibitors compared with those with mild molecular defects
such as missense or splice site mutations, where some
residual FVIII/FIX antigen is present.60–62 This is supported
by the reported inhibitor prevalence of 21 to 88% in hemo-
philia A and 6 to 60% in hemophilia B patients with severe
defects as opposed <10% prevalence in patients with mild
molecular defects.63 Exceptions to this are patients with
missense mutations where inhibitors develop when confor-
mational changes within the immunogenic domains of the

Figure 6 Genotype-phenotype correlation in hemophilia. Deletions or insertions in the factor 8 or factor 9 gene lead to a shift in frame of the
translation and generally cause severe hemophilia. Exceptions to these are recurrent deletions in a polyrun of A nucleotides such as in the factor 8
gene. They result mostly in severe and occasionally moderate disease. Point mutations caused by a single nucleotide change can result in a
nonsense substitution predicting abrupt premature termination of translation. Other type of point mutations can result in missense substitution
(e.g., Cys!Arg) or affect splice junctions of intron-exon boundaries and their disease severity depends on the location and any particular function
of the amino acid affected.
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Table 1 Data on Personnel Standards and the Type and Number of Genetic Tests Done for Hemophilia in Various Laboratories across
the World

Category Developed (n¼ 11) Developing (n¼ 8) p Value

Setting Hospital-based 91% 100%

Research-based 9% �
Urban 100% 88%

Laboratory Director M.D.
Ph.D.
M.S.
M.D.þ Ph.D.

36%
36%
9%
18%

75%
12.5%
12.5%
�

ns

Experience (y) 20 (7–40) 14 (11–28) 0.028

Laboratory personnel Number 4 (2–82) 4 (2–7) ns

Supervisor (experience, y) 20 (10–30) 10 (5–17) 0.01

Technician
(collective experience, y)

22 (2–110) 12 (5–20) ns

Genetic service provided Proportion of laboratories offering tests p Value

Developed (n¼ 11) Developing (n¼ 8) Total

Hemophilia A 100% 88% 94%

Linkage analysis 10% � 6%

Direct mutation screening
and/or DNA sequencing

70% 43% 59%

Both linkage and direct
mutation detection

20% 57% 35%

No. of cases/year 32 (10–118) 33 (11–60) 0.856

Hemophilia B 73% 88% 81%

Linkage analysis 0% 17% 7%

Direct mutation screening
and/or DNA sequencing

89% 67% 80%

Both linkage and direct
mutation detection

11% 17% 13%

No. of cases/year 9 (2–35) 7 (4–19) 0.791

ns¼ p>0.05.

Figure 7 Proficiency testing characteristics of laboratories (n ¼ 19) surveyed in our questionnaire survey.
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FVIII protein occur.64–66 Thus, the risk stratification proposed
earlier by Giannelli et al based on genetic risk factors may be
of increasing relevance.67

If themolecular defect is unknown, the risk of an inhibitor is
3%; if the mutation results in a single amino acid substitution,
the risk is further reduced to near zero; while for frameshift,
premature stop codon and splice site mutations, the risk of
inhibitor development is 20%. Finally, for gross deletions and
gene rearrangements,which constitute 50%of themutations in
inhibitor patients, the risk is even higher. However, the discor-
dance for inhibitor development seen in patients or siblings
with identical gene mutations suggests that other genetic
factors could play a modifier role.68 More recently several
polymorphisms in the genes encoding immunoregulatory cy-
tokines and molecules such as interleukin-10, cytotoxic T-
lymphocyte antigen-4, tumor necrosis factor-α, and specific
F8 haplotypes have shown to be associated with the develop-
ment of inhibitors in patients with hemophilia A.69–72

From these data it is clear that the immunological response
leading to inhibitor formation is complex and several cellular-
, cytokine-, and immunogen-related parameters can have a
bearing on this response.73 Of these, only the impact of
genotype on inhibitor formation is well established.74,75

Not all patients with such disruptive mutations and associat-
ed cytokine polymorphisms develop inhibitors, suggesting
that other cellular and environmental factors contribute to its
development. Understanding these factors will be crucial to
reduce the risk of inhibitor formation in the high-risk patient.

Gene Therapy

Gene therapy for hemophilia offers a promising curative
option, especially considering that a modest increase in FVIII
or FIX levels above 1% can prevent spontaneous bleeding and
substantially enhance the quality of life in patients with
hemophilia.76 Although a variety of physical and chemical
methods have been developed for introducing the defective
gene into target cells, viruses have generally been proven to

bemuchmore efficient for this purpose. Among the currently
available viral vectors, the adeno-associated virus (AAV)-
based gene delivery is known to be potentially safer than
retroviral and adenoviral vectors.77–80AAV serotype 2 (AAV2)
is the prototype vector that has been extensively studied.81

Indeed, AAV2 has become a preferred choice by many inves-
tigators for in vivo viral gene transfer, and due to its wide
tissue tropism, it has been tested in over 20 clinical trials to
treat a wide variety of monogenic diseases82,83 with thera-
peutic success achieved in the retinal degenerative disorder,
Leber congenital amarousis.84,85

Gene Transfer Studies for Hemophilia A
The prevalence of hemophilia A is approximately six times
more than hemophilia B, so it is quite pertinent to have
curative gene therapy options for hemophilia A. The F8 cDNA
is 7.3 kb in size, which is much larger than 1.4 kb for F9
cDNA.16 Due to its large molecular weight and the need for
stabilization with von Willebrand factor, F8 transgene ex-
pression has largely been pursued in the context of hepatic
gene transfer.86 Although circulating at low concentrations in
humans (normal plasma levels are 100 to 200 ng/mL instead
of 5 ug/mL in the case of FIX), FVIII has been more difficult to
express at therapeutic levels.86 Recombinant single-stranded
(ss) AAV vectors can package �4.6 kb, therefore, the 4.3 kb-B
domain-deleted (BDD) F8 remains a preferred source for gene
transfer in hemophilia A.87

Sarkar et al88 reported partial correction of hemophilia A
mice using a ssAAV2 vector expressing BDD-murine F8. They
found that despite long-term phenotypic correction, plasma
FVIII activity peaked to only �8% and declined to 2 to 3% at
9months, attributing thesemodest levels to the use of a short
promoter lacking regulatory elements necessary for greater
F8 expression.89 Subsequently, the same group evaluated
alternate AAV serotypes 5, 7, and 8 in murine models of
hemophilia A, where AAV8 serotype achieved a near 100%
correction of plasma FVIII activity irrespective of the route of
administration.90 Jiang et al91 demonstrated the efficacy and

Table 2 Details of Samples Distributed for the Molecular Genetics EQAS for Hemostasis Disorders in India

Survey Year Hemophilia A Hemophilia B Factor V R506Q PT
20210G>A

MTFHR
677C>T

2006 Intron 22 inversion Negative for mutation RR G/A C/C

2007 Intron 22 inversion Tyr115Cys RR G/G T/T

2008A Informative for Intron
13 CAn markers

Lys409X RR G/A C/T

2008B Informative for XbaI marker Glu245Lys RQ G/G �
2009A Informative for BclI, HindIII,

Intron 13, 22 CAn marker
Arg-4Gln RR G/G T/T

2009B Informative for intron
13 CAn/ XbaI marker

Val196Phe RQ G/G C/T

2010A Informative for intron 22 CAn /
Glu1704X

Arg248X RR G/G C/C

2010B Informative for XbaI, HindIII
Glu1875X

Gly207Glu RR G/G C/T
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safety of AAV-canine F8 vectors of serotypes 2, 5, 6, and 8 in
achieving long-term liver-specific FVIII expression, in both
hemophilia A mice and dogs. Generally, a very high dose of
>1012 vg/kg (AAV2 serotype) vector is required to obtain FVIII
activity of 2 to 4% of normal in hemophilia A mice and dogs.
This underscores the need to develop additional strategies for
a successful F8 gene transfer before it can be tested in humans.

Apart from use of AAV8 serotype-based vectors, several
other strategies are being tested to optimize AAV-F8 delivery
in preclinical models. One of the promising approaches is the
coadministration of a self-complementary (sc)AAV vector con-
taining protein phosphatase 5 gene (scAAV-PP5) as a helper
virus, which improves the transgene expression (>fivefold)
from a conventional ssAAV vector by interfering with the
transcriptional block induced by a host cell protein,
FKBP52.92,93 In addition, the use of exogenous agents such as
proteasome inhibitors to achieve improvedFVIII expressionand
immune evasion,94 the optimization of F8 transgene cassetteby
the use of a transsplicing vector95 have also been proposed.

Gene Transfer Studies for Hemophilia B
For several reasons, such as the small size of the F9 cDNA and
the relatively easy end-point laboratory measurements of FIX
activity, hemophilia B has been a long-standing target of

interest in the development of AAV-based gene transfer
therapeutics.96 Substantial multiyear correction of hemo-
philia B has been documented in animal models using
muscle/liver-directed gene transfer.97–103 Due to the stability
of expression of most foreign transgene products in murine
tissues coupled with absence of prior exposure of AAV in
these models, AAV was considered as minimally immuno-
genic for many years.103,104 But, it has been difficult to attain
sustained expression of FIX in human clinical trials with AAV
vectors.

In the first clinical trial for hemophilia B105,106

(NCT00076557, http://clinicaltrials.gov), muscle-directed
gene transfer of some 2 to 6 � 1011 vg/kg of AAV-F9 resulted
in only a modest increase (<2%) in FIX levels in the eight
patients treated on a dose-escalation model. This study also
established for the first time the safety of the gene transfer
protocol. Subsequently, in a Phase I/II clinical trial for hepatic
FIX gene transfer (NCT00515710, http://clinicaltrials.gov), a
subject with severe hemophilia B (<1% FIX activity) obtained
a therapeutic level of expression (�10% of normal FIX levels),
exactly as the canine data had predicted for this vector dose
(2� 1012 vg/kg).107 However, expression gradually declined to
baseline between 1 and 2months after gene transfer concomi-
tant with a transient rise in liver enzyme levels. No antibodies
against FIX were formed. Subsequent studies revealed a CD8þ

T-cell response to AAV2 capsid and suggested that MHC I
presentation of input capsid to reactivated memory T cells
led to elimination of transduced hepatocytes.108–110

In amore recent hemophilia B clinical trial (NCT00979238,
http://clinicaltrials.gov),111 the use of a scAAV8 vector to
deliver an optimized F9 transgene cassette in four hemophilia
B patients has shown promise, with a sustained FIX expres-
sion of 2 to 4% at significantly lower vector does (2 to 6� 1010

vg/kg). However, in two patients who received 6� 1010 vg/kg
of scAAV8-F9 vector, a dose-dependent activation of capsid-
specific T cells against AAV8 vectors have been noted but has
not had an effect on FIX transgene expression, so far.

Although responses to AAV-FIX hepatic gene transfer in
humans have not been fully reconciled with results from
animal studies, a theme has emerged from clinical trials, that
is, immune response and toxicity correlates with high vector
doses. Transaminitis in the AAV-FIX liver gene transfer was
only observed at AAV2 doses of �5� 1011 vg/kg.107 More
recently, in an attempt to block CD8þ T-cell responses against
AAV1 capsid inmuscle-directed gene transfer in patientswith
lipoprotein lipase deficiency, immune suppression with cy-
closporine and mycophenolate mofetil was effective at lower
vector doses (3� 1011 vg/kg) but failed to prevent IFN-γ
CD8þ T-cell responses against capsid at high doses (1�
1012 vg/kg).112 These data suggest that combination strate-
gies to attenuate capsid- or transgene-specific immune re-
sponses either by developing novel AAV vectors or AAV-
specific transient immunosuppression protocol would be
required to achieve long-term liver-directed gene transfer
of FIX. Recent developments in the field to achieve this have
been encouraging.

The generation of modified AAV vectors containing muta-
tions of the surface-exposed tyrosine residues (►Fig. 9) has

Figure 8 Radiological pictures of joints with and without intra-
articular damage. The figure shows the radiological picture of knee
joints in patients with severe hemophilia A. On the panel A, we see a
severely damaged knee joint. This patient had 37 bleeds in the
preceding year and all his joints were affected. His Pettersson score
was 27 and the clinical score was 10. On the panel B, the radiological
picture shows a normal joint architecture. This patient had no bleeds
and none of his joints were affected. This is a classic example of a
milder form of severe hemophilia. Even among those patients who
bleed frequently (Panels C, D), some have minimal synovial reaction,
but loss of articular space and flexion deformity (Panel C) while others
have hypertrophic synovium but their articular space is preserved with
full range of motion (Panel D).
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been shown to protect vector particles from proteasome
degradation.113 This tyrosine mutant vector after adminis-
tration of a vector dose that only results in subtherapeutic and
transient expression with wild-type AAV2 encapsidated vec-
tor has resulted in a long-term therapeutic and tolerogenic
expression of human F9 in a murine model of hemophilia
B.114 In addition, it has been recently identified that the host
cell nuclear factor kappa B is the major regulator of innate/
adaptive immune response against AAV vectors and specific
inhibition of this activation can result in sustained transgene
expression from AAV vectors.115 However, these and other
novel approaches116,117 need to be rigorously scrutinized in
higher animal models before they can be tested in humans.

Conclusions

Genetic studies in hemophilia have given patients and their
treating physicians better options for the management of this
condition. However, there is also scope and promise for
further research in this field to achieve a better outcome.
Despite applying sensitivemethods for mutation detection by
PCR-based analysis of genomic DNA, a causative mutation is
not identified in the F8 gene in �2 to 5% patients with severe
hemophilia A. Newer strategies are needed for such cases.
Epistatic factors that affect the clinical severity and inhibitor
development in this condition need further definition to
develop strategies for risk prediction. Further refinements
in gene therapy vectors are needed to translate the success
seen in preclinical models into patients with hemophilia.

Note
A recent published report from Dr Nathwani's group has
demonstrated that peripheral-vein infusion of scAAV8
vectors expressing human FIX improved the bleeding
phenotype in patients with hemophilia B. Importantly,
the authors have circumvented the host immune-mediat-
ed clearance of AAV-transduced hepatocytes with a short
course of glucocorticoids.111,134 These strategies offer
renewed hope for the success of gene therapy in patients
with hemophilia.
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