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Abstract

We have recently shown that co-administration of conventional single-stranded adeno-associated virus 2
(ssAAV2) vectors with self-complementary (sc) AAV2-protein phosphatase 5 (PP5) vectors leads to a significant
increase in the transduction efficiency of ssAAV2 vectors in human cells in vitro as well as in murine hepatocytes
in vivo. In the present study, this strategy has been further optimized by generating a mixed population of
ssAAV2-EGFP and scAAV2-PP5 vectors at a 10:1 ratio to achieve enhanced green fluorescent protein (EGFP)
transgene expression at approximately 5- to 10-fold higher efficiency, both in vitro and in vivo. This simple
coproduction method should be adaptable to any ssAAV serotype vector containing transgene cassettes that are
too large to be encapsidated in scAAV vectors.

Introduction

Recombinant vectors based on a nonpathogenic hu-
man parvovirus, the adeno-associated virus (AAV),

have gained attention for gene transfer and gene therapy
because of their safety and/or clinical efficacy in a number
of Phase I/II clinical trials in humans (Flotte et al., 1996, 2004;
Kay et al., 2000; Aitken et al., 2001; Marshall, 2001; Wagner
et al., 2002; Manno et al., 2003; Conlon and Flotte, 2004;
Snyder and Francis, 2005). However, the conventional AAV
vectors contain a single-stranded DNA genome, which is
transcriptionally inactive. Our group and others have docu-
mented that viral second-strand synthesis is a major rate-
limiting step in AAV vector–mediated transgene expression
(Muzyczka, 1992; Ferrari et al., 1996; Fisher et al., 1996; Qing
et al., 1997, 1998; Mah et al., 1998; McCarty et al., 2001; Wang
et al., 2003; Zhong et al., 2004a; Zhao et al., 2007). Although
double-stranded DNA–containing AAV vectors, termed self-
complementary AAV (scAAV), have been developed that
bypass the requirement for viral second-strand DNA syn-
thesis (McCarty et al., 2001), their packaging capacity is re-
duced by approximately one half (Grieger and Samulski,
2005; Wu et al., 2007). Thus, scAAV vectors containing large
genes, such as the human coagulation factor VIII (hF.VIII) for

the potential gene therapy for hemophilia A, are unlikely to
be generated (Sarkar et al., 2003; Jiang et al., 2006), and
strategies to improve the transduction efficiency of conven-
tional ssAAV vectors need to be developed.

In pursuit of one such strategy, we focused our studies on
FKBP52, a 52-kDa host cell protein that binds to the immu-
nosuppressive drug, FK-506. Phosphorylated forms of
FKBP52 interact specifically with the D-sequence within the
inverted terminal repeat (ITR) of the AAV genome (Qing et al.,
1997, 2001). FKBP52 can be phosphorylated at both tyrosine
(Tyr) and serine/threonine (Ser/Thr) residues, with phos-
phorylation strongly inhibiting the viral second-strand DNA
synthesis, thereby negatively impacting AAV-mediated
transgene expression (Qing et al., 1998, 2001, 2003; Zhong et al.,
2004a,b,c). We also identified two key cellular phosphatases,
T-cell protein tyrosine phosphatase (TC-PTP) and protein
phosphatase 5 (PP5), which catalyze dephosphorylation of
FKBP52 at Tyr and Ser/Thr residues, respectively, and thus
prevent binding of FKBP52 to the D-sequence, leading to ef-
ficient viral second-strand DNA synthesis and AAV-mediated
transgene expression (Qing et al., 2003; Zhong et al., 2004b;
Zhao et al., 2007). Subsequently, we also developed scAAV-
TC-PTP and scAAV-PP5 vectors (Zhong et al., 2004a; Zhao
et al., 2007; Jayandharan et al., 2008) and demonstrated that co-
infection or co-administration with these scAAV vectors leads
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to a significant increase in the transduction efficiency of
ssAAV vectors, both in vitro and in vivo ( Jayandharan et al.,
2008, 2010).

In an attempt to further reduce the labor and production
costs associated with packaging ssAAV and scAAV vectors
separately, we reasoned that the two steps could be com-
bined to generate a mixed population of the two vectors.

Here we describe a quadruple-plasmid transfection protocol
that results in the production of ssAAV vectors that trans-
duce cells up to ninefold more efficiently than in the absence
of PP5 co-expression. This simple strategy should be appli-
cable for generating more efficient ssAAV vectors containing
large genes that exceed the packaging capacity of scAAV
vectors.

FIG. 1. Schematic representation of generation of single-stranded adeno-associated virus 2 (ssAAV2) vectors by the (A)
conventional triple-plasmid transfection and (B) quadruple-plasmid transfection protocols. The latter protocol would be
expected to yield a mixed-vector stock at 10:1 ratio. See text for details. EGFP, enhanced green fluorescent protein; PP5,
protein phosphatase 5. Color images available online at www.liebertonline.com/hum

FIG. 2. Quantitative DNA slot-blots for determining the vector titer stocks. Twofold serial dilutions of the two vector stocks
generated by the triple-plasmid and the quadruple-plasmid transfection protocols, respectively, were analyzed on two
identical blots probed with 32P-labeled (A) EGFP-specific DNA probe and (B) PP5-specific DNA probe. Recombinant
EGFP and PP5 plasmids (top two rows in each blots, respectively) were also used as appropriate controls. scAAV2, self-
complementary adeno-associated virus 2. Color images available online at www.liebertonline.com/hum
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Materials and Methods

Plasmids and vectors

Standard cloning techniques were used to construct all re-
combinant AAV-based plasmids. Recombinant expression
plasmids containing the Rous sarcoma virus (RSV) promoter–
driven human PP5 cDNA was generously provided by
Drs. David J. Chen and Benjamin P.C. Chen (University of Texas
Southwestern Medical Center at Dallas). The scAAV2 plasmids
containing the RSV promoter–driven human PP5 (pdsAAV-
RSV-PP5) was constructed by standard cloning methods as
described previously (Zhong et al., 2004a; Zhao et al., 2007). The
scAAV plasmid containing the chicken beta-actin promoter

(CBAp) in the vector backbone of plasmid pdsAAV-CBAp-
EGFP was a kind gift from Dr. X. Xiao, University of North
Carolina at Chapel Hill, and the recombinant AAV plasmid
containing the human cytomegalovirus immediate-early gene
promoter (CMVp)-driven hrGFP was purchased from Strata-
gene. Recombinant AAV helper plasmid pACG2-RC was gen-
erously provided by Dr. R.J. Samulski, University of North
Carolina at Chapel Hill. The adenovirus-helper plasmid, pAd-
Helper, was purchased from Stratagene. The CMVp-hrGFP ex-
pression cassette was replaced by the CBAp-EGFP expression
cassette to generate a recombinant plasmid designated pBL-18.

Highly purified stocks of conventional recombinant
ssAAV2 vector were generated by either the triple-plasmid

FIG. 3. ssAAV vector-mediated transduction of human 293 cells. (A) Vector stocks generated by the triple-plasmid and the
quadruple-plasmid transfection protocols, respectively, were used to transduce cells at various indicated multiplicities of
infection, and transgene expression was detected by fluorescence microscopy 72 hr post-transduction. Representative images are
shown. (B) Quantitative analyses of the data from (A). Images from five visual fields were analyzed quantitatively by ImageJ
analysis software. Transgene expression (mean value) was assessed as total area of green fluorescence (pixel2) per visual field.
Analysis of variance (ANOVA) was used to compare test results with the control EGFP expression. vgs, vector genomes. Color
images available online at www.liebertonline.com/hum
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transfection protocol as described previously (Auricchio et al.,
2001) or modified to include RSV-PP5 in a quadruple-plasmid
protocol under identical conditions. The physical particle titers
of recombinant vector stocks were determined by quantitative
DNA slot-blot analyses using 32P-labeled enhanced green
fluorescent protein (EGFP)- or PP5-specific DNA probes as
described previously (Kube and Srivastava, 1997).

Recombinant AAV vector transduction studies in vitro

Human 293 cells were infected with 2�103 to 5�103 vector
genomes (vgs) of ssAAV2-EGFP or ssAAV2-EGFPþscAAV2-
PP5 vectors at 378C for 1 hr, and transgene expression was
visualized using an Axiovert 25 fluorescence microscope (Carl
Zeiss, Inc.). Images from five visual fields were analyzed
quantitatively by ImageJ analysis software (National Institutes
of Health). Transgene expression (mean� SD) was assessed as
total area of green fluorescence (pixel2) per visual field.
ANOVA was used to compare between test results and the
control and they were determined to be statistically significant.

Animal handling

All animal experiments were performed according to the
guidelines for animal care specified by the Animal Care Ser-
vices at the University of Florida. Ten-week-old male C57BL/
6J mice were purchased from Jackson Laboratory and main-
tained at the University of Florida College of Medicine. The

Institutional Animal Care and Use Committee approved all
protocols for the care and use of these mice.

Recombinant AAV vector transduction studies in vivo

Approximately 1�1010 vgs of ssAAV2-EGFP vectors were
injected into C57BL/6J mice intravenously via the tail vein
(n¼ 2, per group). Phosphate-buffered saline (PBS)-injected
mice were used as an appropriate control. Liver sections from
three hepatic lobes of the PBS-injected and vector-injected
mice 2 weeks post-injection were evaluated for the trans-
duction efficiency of the ssAAV2-EGFP vector. The EGFP
expression was measured by imaging using an Axiovert 25
fluorescence microscope (Carl Zeiss, Inc.). Images from four
visual fields of mock- and vector-administered hepatocytes
were analyzed quantitatively by ImageJ analysis software.
Transgene expression (mean� SD) was assessed as total area
of green fluorescence (pixel2) per visual field. ANOVA was
used to compare between test results and the control and they
were determined to be statistically significant.

Results

Co-transfection of plasmids containing
ssAAV2-EGFP and scAAV2-PP5 leads to
the production of a mixed-population of both vectors

We recently reported that co-administration of scAAV2-PP5
vectors resulted in a significant increase in the transduction

FIG. 4. Schematic representation of (A) viral second-strand DNA synthesis in the target and (B) the packaging 293 cells.
FKBP52 (F), phosphorylated at serine/threonine residues (red symbol), which strongly inhibits the second-strand DNA
synthesis of a conventional ssAAV vector, is dephosphorylated at serine/threonine residues by PP5 (blue semi-oval) ex-
pressed from scAAV-PP5 vectors, which allows more efficient viral second-strand DNA synthesis of conventional ssAAV
vector, and consequently, leads to more efficient transgene expression in the target cell. Alternatively, deliberate over-
expression of adenovirus-helper proteins and/or PP5 leads to the generation of scAAV-EGFP genomes that are encapsidated
in vector capsids in the packaging cell. See text for details. Color images available online at www.liebertonline.com/hum
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efficiency of ssAAV2-EGFP vectors in murine hepatocytes
in vivo ( Jayandharan et al., 2008, 2010). Since these vectors were
generated separately using the standard triple-plasmid trans-
fection protocol (shown schematically in Fig. 1A), and then
admixed, we wished to examine whether it was feasible to
generate the two vectors simultaneously using a quadruple-
plasmid transfection protocol (depicted schematically in Fig.
1B). To this end, in addition to the pAAV2-RC and pAd-Helper
plasmids, the pBL-18 (AAV2-CBAp-EGFP) and pAAV2-RSVp-
PP5 plasmids were co-transfected at a 10:1 ratio. The rest of the
steps were the same as the standard triple-plasmid transfection
protocol, which was also employed under identical conditions
to generate the two sets of vector stocks. The vector titers were
determined using two identical quantitative DNA slot-blots
containing twofold serial dilutions of the appropriate plasmid
DNA controls. The blots were probed with 32P-labeled EGFP-
and PP5-specific DNA probes, respectively. These results are
shown in Fig. 2. It is evident that co-transfection with the PP5
plasmid did not affect the titers of ssAAV2-EGFP vectors (Fig.
2A), and that scAAV2-PP5 vectors were packaged at approxi-
mately 17-fold lower titers (Fig. 2B).

ssAAV2-EGFPþscAAV-PP5 coproduced vectors
transduce human cells more efficiently in vitro

We hypothesized that rapid expression of PP5 from
scAAV vectors would lead to dephosphorylation of FKBP52,

resulting in efficient second-strand synthesis of the conven-
tional ssAAV-EGFP vectors. Approximately 5�105 293 cells
were plated in each well in six-well plates and incubated at
378C for 12 hr. Cells were washed once with Dulbecco’s
modified Eagle’s medium (DMEM) and then either mock--
infected or infected at 378C for 1 hr with various multiplici-
ties of infection (MOI) of the two vector stocks under
identical conditions. Cells were incubated in complete DMEM
containing 10% fetal bovine serum and 1% antibiotics.
Seventy-two hours post-infection, cells were visualized under
a fluorescence microscope. As can be seen in Fig. 3A, up to
about a sixfold increase was observed in the transgene ex-
pression from ssAAV2 vectors that also contained the
scAAV2-PP5 vectors at a 10:1 ratio (Fig. 3B). These data cor-
relate well with our previous studies in which co-infection of
both ssAAV2-EGFP and scAAV2-PP5 vectors augmented the
transduction efficiency by about five- to sevenfold in human
cells ( Jayandharan et al., 2008). These results further corrob-
orate that scAAV2-PP5 vectors serve as helper viruses to
augment the transduction efficiency of ssAAV2-EGFP vectors
by facilitating the viral second-strand DNA synthesis.

scAAV2-PP5 vector-mediated ssAAV2-EGFP viral
second-strand DNA synthesis occurs in the target cell

We next wished to distinguish whether the ssAAV2-EGFP
vector genomes underwent second-strand DNA synthesis
following transduction of the target cell, or whether scAAV2-
EGFP vectors were assembled in the packaging cell, espe-
cially since the size of the ssAAV2-EGFP genome was less
than 2.0 kb. These two possibilities are shown schematically
in Fig. 4. Thus, it was crucial to determine the nature of the
encapsidated AAV2-EGFP genomes in the vector stocks. To
this end, equal amounts of ssAAV2-EGFP and ssAAV2-
EGFPþscAAV-PP5 vectors were denatured, and the DNA
samples were electrophoresed on alkaline agarose gels and
autoradiographed using a 32P-labeled EGFP-specific DNA
probe. These results, shown in Fig. 5, clearly document that
in both vectors, the viral genomes were present largely as
single-stranded DNA, although a low-level encapsidation
of scAAV genomes also occurred, which is consistent
with previously published reports (Muzyczka, 1992; Ferrari
et al., 1996; Fisher et al., 1996; Qing et al., 1997, 1998; Mah et al.,
1998; McCarty et al., 2001; Wang et al., 2003; Zhong et al.,
2004a; Zhao et al., 2007).

ssAAV2-EGFPþscAAV-PP5 coproduced vectors also
transduce murine hepatocytes more efficiently in vivo

Finally, it was also of interest to evaluate the transduction
efficiency of ssAAV2-EGFPþscAAV-PP5 vectors in murine
hepatocytes in vivo. Approximately 1�1010 physical particles
of ssAAV2-EGFP vectors alone or the mixed-population of
ssAAV2-EGFPþscAAV2-PP5 vectors were intravenously
injected into male C57BL/6J mice via the tail vein. PBS-
injected mice were used as an appropriate control. Liver
sections from three hepatic lobes of the PBS-injected and
vector-injected mice 2 weeks after injection were examined
for the transduction efficiency of the ssAAV2-EGFP vector.
These results are shown in Fig. 6. Consistent with previously
published studies (Ponnazhagan et al., 1997; Snyder et al.,
1997; Nakai et al., 2000; Chen et al., 2001; Song et al., 2001;
Zhong et al., 2004a; Jayandharan et al., 2008), little green

FIG. 5. Southern blot analysis of the nature of the AAV
DNA genomes in vector stocks generated by the two pro-
tocols. Equivalent amounts of DNA samples were denatured
at 658C for 30 min and electrophoresed on an alkaline-
agarose gel and probed with 32P-labeled EGFP-specific DNA
probe. Standard DNA Mr markers and the EGFP DNA insert
were used as appropriate controls. Color images available
online at www.liebertonline.com/hum

EFFICIENT TRANSDUCTION BY ssAAV VECTORS 637



fluorescence occurred in hepatocytes 2 weeks after injection
of conventional ssAAV2-EGFP vectors alone. However, in-
jection of ssAAV2-EGFPþscAAV2-PP5 vectors led to an
approximately ninefold increase in the transduction of he-
patocytes. The injection of scAAV2-PP5 vectors did not lead
to major histological abnormalities in the liver. Both PBS-
and helper virus–injected groups were grossly normal. The
liver tissue from all PBS- or helper virus–injected animals
had no evidence of any toxicity or any pathological lesions
upon examination by an experienced pathologist certified by
the American College of Veterinary Pathologists. Since
FKBP52 is present predominantly in Ser/Thr-phosphory-
lated form in murine hepatocytes, these studies suggest that
PP5-mediated dephosphorylation of FKBP52 is necessary
and sufficient to augment the viral second-strand DNA
synthesis of, and consequently, transgene expression from,
ssAAV-EGFP vectors ( Jayandharan et al., 2008, 2010).

Discussion

It is now firmly established that the viral second-strand
DNA synthesis, which is strongly inhibited by phosphory-
lated forms of a cellular chaperone protein, FKBP52, is a

major rate-limiting step that impacts the transduction effi-
ciency of ssAAV vectors (Ferrari et al., 1996; Fisher et al.,
1996; Qing et al., 1997, 1998, 2001, 2003; Mah et al., 1998;
Zhong et al., 2004b). Although the development of scAAV
vectors can circumvent this problem (McCarty et al., 2001,
2003; Wang et al., 2003), the packaging capacity of these
vectors is severely limited (Grieger and Samulski, 2005; Wu
et al., 2007), and scAAV vectors containing large genes can-
not be generated. Thus, there is a need to develop alternative
strategies to achieve efficient transgene expression from
ssAAV vectors. Indeed, we have devised a dual-vector ap-
proach in which scAAV-TC-PTP and/or the scAAV-PP5
vectors are admixed with a ssAAV vector, and efficient
transgene expression ensues (Zhong et al., 2004a; Jayand-
haran et al., 2008, 2010). However, this involves the pro-
duction of at least two separate vector stocks, which is both
labor intensive and expensive.

In this article, we describe the usefulness of a simple ap-
proach to generate two AAV vectors simultaneously in the
same production-run by using quadruple-plasmid transfec-
tion. Based upon our recent studies, in which we admixed
ssAAV vectors containing the human coagulation factor IX
(hF.IX) and scAAV-PP5 vectors at a 10:1 ratio and achieved

FIG. 6. Comparative analysis of ssAAV2-EGFP vector-mediated transduction efficiency in hepatocytes of normal C57BL/6
mice injected with vector stocks generated by the two protocols. (A) Transgene expression was detected by fluorescence
microscopy 2 weeks post-injection of 1�1010 ssAAV2-EGFP vector particles per animal via the tail vein. Representative
images are shown. (B) Quantitative analyses of the data from (A). Transgene expression was assessed as described in the
legend to Fig. 2. *p< 0.01. Color images available online at www.liebertonline.com/hum
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therapeutic levels of F.IX expression at otherwise subthera-
peutic doses of hF.IX vector ( Jayandharan et al., 2010), we
used the same ratio of the ssAAV-EGFP and scAAV-PP5
plasmids. Although the optimal ratio needs to be determined
experimentally, these studies suggest that it may be possible
to further reduce the plasmid concentrations to lower the
vector production costs. A potential complication involving
the possibility of homologous recombination events between
the two ITR-containing vectors following co-transfection in
the packaging cell line would appear to be inconsequential
both because of the 10:1 ratio of the two plasmids used, and
no significant cross-hybridization signals were observed on
DNA slot-blots (Fig. 2).

One advantage of this vector production system is that
this approach should be applicable to any ssAAV transgene
cassette and can be adapted to any of the additional available
AAV serotype vector since the same ssAAV2 genome is
cross-packaged in different serotype vectors (Gao et al., 2002,
2006). Because deliberate expression of PP5 has thus far not
been shown to be deleterious in human cells in vitro (Zhao
et al., 2007; Jayandharan et al., 2008) or in murine hepatocytes
in vivo ( Jayandharan et al., 2010), including in PP5-transgenic
mice (unpublished results), it is tempting to speculate that
this system could also be adapted to generate AAV serotype
vectors for their safe and efficacious use in the potential gene
therapy in humans.
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