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Skeletal muscle tissue engineering (SMTE) aims to repair or regenerate defective skeletal muscle tissue lost by
traumatic injury, tumor ablation, or muscular disease. However, two decades after the introduction of SMTE,
the engineering of functional skeletal muscle in the laboratory still remains a great challenge, and numerous
techniques for growing functional muscle tissues are constantly being developed. This article reviews the recent
findings regarding the methodology and various technical aspects of SMTE, including cell alignment and
differentiation. We describe the structure and organization of muscle and discuss the methods for myoblast
alignment cultured in vitro. To better understand muscle formation and to enhance the engineering of skeletal
muscle, we also address the molecular basics of myogenesis and discuss different methods to induce myoblast
differentiation into myotubes. We then provide an overview of different coculture systems involving skeletal
muscle cells, and highlight major applications of engineered skeletal muscle tissues. Finally, potential chal-
lenges and future research directions for SMTE are outlined.

Introduction

Approximately 45% of the mass of the human adult
body is muscle tissue. Muscles play an important role in

locomotion, prehension, mastication, ocular movement, and
other dynamic events, including body metabolism regulation.
Myopathy, traumatic injury, aggressive malignant tumor ex-
traction, and muscle denervation are the most common clinical
reasons for therapeutic or cosmetic reconstructive muscle
surgery. Therefore, the engineering of muscles as clinical
substitutes for various medical applications is beneficial. In this
context, skeletal muscle tissue engineering (SMTE) focuses on

the development of engineered tissues capable of repairing or
replacing normal function in defective muscles. The concept of
SMTE (Fig. 1) involves the culture of muscle cells that are
harvested either from the patient or a donor, with or without
the use of tissue scaffolds to generate functional muscle that
can be implanted in the patient’s body.1 Further, SMTE also
has great potential for drug screening,2,3 construction of hy-
brid mechanical muscle actuators,4,5 robotic devices,6–8 and as
a potential food source containing engineered meat.9

Muscle tissue can be classified as smooth muscle, cardiac
muscle, and skeletal muscle, which have been extensively
reviewed previously.10–13 However, as the properties of
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engineered muscles are still far from their natural counter-
parts, we aim to review and address the methodology for
building skeletal muscle with recent insights and to over-
come the barriers between different fields of research to
provide a better understanding of the nature of muscle and
practical ways to engineer muscle tissue. Specifically, we
review and update recent findings on the methodology and
various technical aspects of SMTE, including cell alignment
and differentiation. We start by addressing the structure and
organization of muscle tissue and then describe useful
methods to align myoblasts cultured in vitro, since cell
alignment is a prerequisite for the formation of myotubes.
We also address the molecular basics of myogenesis and
describe different methods to induce myoblast differentia-
tion into myotubes. We then give an overview of different
coculture systems involving skeletal muscle cells, and
highlight major applications of engineered skeletal muscle
tissues. Finally, we conclude with a discussion of potential
challenges and future research directions for SMTE.

Muscle Tissue Organization

The human body has over 600 skeletal muscles that are
linked to bones and are involved in anatomical position,
locomotion, preemption, mastication, and other dynamic
events. These muscles are comprised of multiple bundles of
muscle fibers that are formed by the fusion of undifferen-
tiated myoblasts into long cylindrical, multinucleated
structures called myotubes (Fig. 2).14 Major components of
the myotubes include the plasma membrane or sarcolemma,
the cytoplasm or sarcoplasm, and the peripheral flattened
multinuclei. The sarcoplasm is notably filled by myofibrils,
which are composed of the cytoplasmic proteins myosin
(thick filament) and actin (thin filament) in repeated units
called sarcomeres that are aligned along the cell axis. Under
a microscope, each sarcomere appears delimited by two
dark lines (Z lines) of dense proteins. Between these two Z
lines are two light bands (I bands) containing actin fila-

ments, separated by a dark band (A band) containing myosin
filaments that overlap each other. The A band has also a
lighter central zone (H zone) that does not overlap with the I
bands when the muscle is in relaxed state; the H zone is
separated in two parts by a middle dark line (M line). As
sarcomeres of different myofibrils are also aligned with each
other in skeletal and cardiac muscle cells (but not in smooth
muscle cells), the myofibers appear striated. When the
muscle contracts, the actin filaments are pulled along the
myosin filament toward the M line, and the overlapping area
between the myosin and actin filaments increases, whereas
the H zone decreases and the muscle becomes shorter.

Other important components of this contractile machinery
found in the sarcoplasm are the sarcoplasmic reticulum,
where calcium ions are stored and used for the muscle ac-
tivation; the T tubules, which are used as the pathway for the
action potential; and proteins, such as troponin and tropo-
myosin, which are linked to the actin filaments to prevent
their interaction with myosin filaments when the muscle is
in a relaxed state. Skeletal muscles differ in their pheno-
types, and muscle fibers in humans are classified into three
categories (I, IIa, and IIx [or IIb]) according to their myosin
heavy chain (MyHC) isoforms.15 Type I fibers are red be-
cause of the presence of myoglobin. They have a high mi-
tochondrial content and rely on oxidative metabolism to
generate ATP. These fibers express slow-twitch MyHCs and
are suited for endurance. Type II fibers are white because of
the absence of myoglobin and rely on glycolytic metabolism
to generate ATP. They express fast-twitch MyHCs and are
suited for fast bursts of power. This difference in twitch speed
between muscle fibers results not only from differences in
MyHC protein isoforms, which induce a difference in sliding
velocity between the actin and the myosin filaments in the
sarcomeres, but also from Ca2 + sequestering components,
such as sarcoplasmic reticulum Ca2 + ATPases that are ex-
pressed as different isoforms in type I and type II fibers.16

Thus, the in vitro development of muscle tissue with high
functionality and good contractibility requires mimicking of

FIG. 1. Schematic illustration of
the concept of skeletal muscle tis-
sue engineering showing three dif-
ferent types of culture techniques
for generating muscle tissue. Color
images available online at www
.liebertpub.com/teb
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this muscular structure, particularly to generate aligned
muscle fibers; therefore, we describe in the ‘‘Engineering of
Skeletal Muscle Tissues In Vitro’’ section some useful
methods to align myoblasts cultured in vitro, as this cell
alignment is necessary to the formation of myotubes.

Engineering of Skeletal Muscle Tissues In Vitro

Although the first contractile skeletal muscle tissue from a
chicken embryo leg was cultured in vitro by Lewis about
hundred years ago,17 the challenge of building large-scale
muscle tissue with functional properties has persisted. Since
the late 1970s, many approaches and techniques have
emerged to study the development of muscle tissues. No-
tably, Vandenburgh and Kaufman developed an in vitro
model for stretch-induced hypertrophy of a skeletal muscle
tissue construct embedded in a collagen gel.18 Later, in the
early 1990s, the first three-dimensional (3D) muscle con-
struct was grown in vitro by Strohman et al.,19 who grew a
monolayer of myoblasts on a membrane that detached after
differentiation and formed 3D contractile muscle tissue,

which was later termed ‘‘myooids’’ by Dennis and col-
leagues.20 More recently, Lam et al. showed that aligned
myotubes formed by the prealignment of myoblasts on a
micropatterned polydimethylsiloxane (PDMS) layer can be
transferred from the PDMS substrate into a fibrin gel, thus
allowing for the formation of a 3D free-standing construct
with higher muscle fiber content and force production.21 The
size of the construct did not exceed 1 mm in diameter be-
cause of the limited diffusion capacity in the tissue. Thus,
the use of synthetic polymers and advanced patterning
techniques has allowed SMTE to progress. Currently, micro-
and nanofabrication techniques enhance the possibility to
create tissues.22 When engineering a skeletal muscle tissue,
one of the key points is to prealign the cells to obtain in-
creased muscle fiber formation, as shown previously by Lam
and colleagues.21 To this end, many techniques (for reviews
on micro/nanofabrication see Ramalingam and Kha-
demhosseini,23 Khademhosseini and Peppas,24 Zorlutuna
et al.,25 and Ostrovidov et al.26), such as soft lithography,27

hot embossing,28 electrospinning,29 photolithography and
solvent casting,30 passive or active stretching,31 and the use of

FIG. 2. Anatomy of a skeletal
muscle and a sarcomere. (A) From
SEER training on structure of
skeletal muscle, U.S. National In-
stitute of Health, National Cancer
Institute (12 July 2012). http://
training.seer.cancer.gov/anatomy/
muscular/structure.html (B)
Micrograph of a sarcomere adapted
with permission from Sosa et al.14

Copyright ª 1994, Elsevier, and
schematic. Color images available
online at www.liebertpub.com/teb
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electrical fields,32,33 have been applied to create an environ-
ment that induces cell alignment. In the following subsec-
tions, we review useful methods to align myoblasts in vitro.

Cell alignment by topography

It has long been known that cell behavior is influenced by
surface features.34 Thus, numerous studies have focused on
the effects of different topographical features, such as size
and geometry, on the cellular response.35–38 Among these
topographical features, parallel grooves are among the most-
studied patterns to elongate muscle cells in one direction.
The first studies aimed to determine how the cells sense
their environment and what causes the cells to undergo
alignment. Thus, grooved patterns with different widths and
depths were tested. For example, Evans et al. generated
micropatterned grooves with depths ranging from 40 nm to
6 mm and widths ranging from 5 to 100mm on silicon sub-
strates by etching with conventional photolithographic
methods and studied myoblast direction and alignment
along the grooves.39 They showed that shallow grooves with
a depth of 40–140 nm did not significantly affect myoblast
alignment, whereas significant cell alignment was achieved
with deep grooves that had a width of 5–12 mm and a depth
of 2–6 mm. Additionally, Clark et al. showed that nanosized
grooves with a width of 130 nm and a depth of 210 nm also
induced myoblast alignment.40 In addition, because they
observed that myotubes with identical diameters formed in
grooves with different widths, Clark et al. hypothesized that
lateral fusion of myoblasts was not a possible mechanism in
myotube formation. Therefore, they cultured myoblasts on
ultrafine grating (grooves with a width of 130 nm and a
depth of 210 nm and ridges with a width of 130 nm) that
strongly aligned the myoblasts, and showed that myoblasts
fused in end-to-end configurations.41

To easily fabricate groove/ridge micro- and nanopatterns
without requiring a clean room, alternative methods to

photolithography have also been used. Thus, since they
contain nano/microgrooves, commercially CD-R and DVD-
R in polycarbonate have been used for directing cell
alignment or for patterning polymers.42,43 Abrasive paper
has also been proposed to easily produce parallel grooves on
a surface at low cost to direct the alignment of myoblasts.44

Similarly, Jiang et al. fabricated sinusoidal-wavy-grooved
(size ranging between 0.1 and 10 mm) micropatterns on a
PDMS surface by stretching a PDMS slab and then sub-
jecting it to extended oxidation under low pressure before
relaxing it. For this continuous topography without sharp
edges, they showed that sharp-edge features were not nec-
essary to induce contact guidance.45 Another study by Lam
et al. focused on the effects of wave periodicity on C2C12
cells and showed that a wavelength of 6 mm was optimal to
induce myoblast and myotube alignment.46 These topogra-
phy–cell interaction studies opposed the theory proposed
by Curtis and Clark, who suggested that cell guidance
on groove-ridge patterns is mostly governed by groove
depth.37,47 Although numerous studies have suggested that
cells sense and grow on predefined topography, the mech-
anism by which the cells sense the topography is not well
understood. However, filopodia are involved in this detec-
tion because they extend in front of the cells and probe the
topographic features.48 This topographical surface guidance
is the foundation of several approaches used for designing
scaffolds in 2D and 3D. For instance, Neumann et al. used
arrays of parallel polymer fibers with thicknesses of 10 to
50 mm and spacings of 30 to 95mm to generate a scaffold for
engineering a C2C12 myoblast sheet. They showed that by
using this method, it was possible to generate a continuous
contractile aligned muscle sheet with fiber spacing of up to
55 mm49 (Fig. 3).

In another example, to build a muscle-tendon-bone tissue
in one step, Ker et al. used a spinneret-based tunable en-
gineered parameter technique to fabricate polystyrene fiber
(655-nm diameter) arrays that they coated with extracellular

FIG. 3. C2C12 cells cultured on an array
of large fibers. (A) Thirty minutes after
seeding. (B) Gaps between fibers were
closed after 5 weeks of culture and a cell
sheet was formed. (C) After 10 weeks in
culture, myotubes were striated (DIC im-
age). (D) Cross-section of the muscular tis-
sue fixed and stained by hematoxylin and
eosin. The fiber plane is in the upper section
(scale bars for [A–D] 50 mm). Reprinted with
permission from Neumann et al.49 Copyright
ª 2003, Mary Ann Liebert, Inc.
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matrix (ECM) proteins, such as fibronectin, and bioprinted
with patterns of two different growth factors. By combining
topographical and chemical cues to mimic the in vivo en-
vironment, they showed that although the fibers induced
C2C12 cell alignment by topography, the localized presence
of growth factors induced myoblast differentiation in teno-
cytes and osteoblasts, and the absence of growth factors
enabled differentiation in myotubes50 (Fig. 4).

Nanotopography also greatly influences cell contact
guidance.51 In groove/ridge patterns, the contact guidance
cues are efficient in aligning cells for groove sizes up to
100 mm. With the development of methods to fabricate
materials from micro- to nanoscale, new advancements of
SMTE became available and materials with nanofeatures are
of great interest. Indeed, cells in vivo evolve in an ECM
environment, which comprises a material with nanoscale
features that is composed of different proteins. For example,
collagen fibrils found in the ECM usually have a length
of *10 mm and a width of 260–410 nm.52,53 The fabrication
of materials with nano-cues and nano-signals that are able to
interact with cells and mimic the natural environment of the
ECM can have tremendous applications in tissue engineer-
ing. Several studies have used columns, protrusions, pits,
nodes, or nano-islands as substrates and have shown that
small features, such as 11-nm columns, 35-nm pits, nano-
posts (pointed columns), or 20-nm islands, promote cell
adhesion, whereas increases in the size of these features
decreases cell adhesion.54 Moreover, it has been shown that
the symmetry of these features as well as the surface
roughness also affects the adhesion of cells.55–58 Surface
topography affects not only cell orientation and elongation
but also the cell differentiation. For example, adult rat
hippocampal progenitor cells cultured on a patterned poly-

styrene dish with 16-mm-wide grooves overexpressed neu-
ronal marker (class III b-tubulin) when compared with
smooth substrates.59 Electrospinning has also been used to
fabricate aligned nanofiber scaffolds to induce the alignment
of myoblasts.29,60–62 The 3D structure of the electrospun
fibers resembles the physical structure of native collagen
fibrils or ECM.63 However, although electrospun scaffolds
are 3D structures, in many studies, the dense packing of
fibers inhibits cell infiltration into the fiber network, and
cells proliferate mostly on the top side of the electrospun
fiber to generate a tissue similar to that formed using other
2D topographic substrates.64 Recently, direct electrospin-
ning of a 3D aligned nanofibrous tube has been realized,
promoting cell alignment and myotube formation.65 In an-
other attempt to scale down the topography features, Dugan
and coworkers employed oriented cellulose nanowhiskers
with a diameter of 10–15 nm on a glass surface. They
showed (Fig. 5) that myoblasts effectively sense the to-
pography of such a surface and that myotubes resulting from
myoblast fusion were nearly oriented in line with the di-
rection of the cellulose nanowhiskers.66 This study clearly
shows that cells are sensitive to topographical features,
which affect cell orientation, shape, and differentiation.

To mimic in vivo muscle tissue, engineering of a 3D
structure from aligned myotubes is needed. Zhao et al. have
shown that a multilayered construct of aligned myotubes can
be obtained by seeding additional myoblasts on a first layer
of aligned myotubes formed in a groove (2-mm width and
depth)/ridge micropattern.38 In addition, Hume et al. re-
cently showed that if C2C12 cells aligned well in small
grooves ( £ 100 mm) and did not align in large grooves in 2D
culture, then their behavior changed in 3D culture.67 Thus,
C2C12 cells were able to align in larger grooves (width of

FIG. 4. Fiber-fabrication procedure by Polystyrene Spinneret-based Tunable Engineered Parameter (STEP). (A) Sche-
matic showing the building of fibers by STEP. (B) STEP fiber types that can be fabricated by one set of fibers running in a
parallel manner (left), two sets of fibers running perpendicular to each other (middle), and one set of fibers running in a
parallel manner with a hollowed-out support base (right). (C) SEM and TEM pictures used to quantify the STEP fiber
diameter and length. (D) SEM image showing the cell attachment to the polystyrene STEP fibers. (E) Images in fluores-
cence of polystyrene STEP fibers coated with Alexa649-conjugated fibrin (right) and uncoated (left). (F) Polystyrene STEP
fibers can be printed on by inkjet printing. (Scale bars: B, 2 mm; C, 100mm and right photo 2 mm; D, 100 mm; E, 200 mm).
Reprinted with permission from Ker et al.50 Copyright ª 2011, Elsevier.
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200 mm and depth of 200 mm) when layered into the grooves.
This study highlights the importance of 3D cultures in tissue
engineering applications.

In an attempt to generate 3D tissue cultures in an envi-
ronment that allows cells to assume a shape and exhibit
matrix adhesion similar to that of native tissues, hydrogels
have been extensively studied.68 Hydrogels can be gener-
ated from synthetic (e.g., poly(ethylene glycol) [PEG]) or
natural polymers (e.g., collagen, chitosan, and hyaluronic
acid). To generate skeletal muscle tissue, myoblasts must
proliferate, migrate, align, and fuse to form a functional
construct. ECM-derived hydrogel-like collagen or fibrin gel
contains fibrils. These tiny protein nanofibers play the role of
natural 3D topographical cues to guide the cells.69,70 Thus,
Lanfer et al. used a microfluidic device to create highly
aligned type I collagen matrices and showed that myotube
assembly and alignment were influenced by the topographical
feature of collagen fibrils.71 Hydrogel molding was also
considered for guiding myoblasts in a method developed by
Bian and coworkers. In their work, a PDMS mold was used to
cast cell-laden hydrogels resulting in myotube alignment
depending on the geometry and size72 (Fig. 6).

A composite 3D scaffold made of parallel glass fibers
within a collagen gel has been used to direct the growth and
differentiation of primary human masseter muscle derived
cells.73,74 The effect of the cell density on the maturation
and contractile ability of an engineered muscle in a collagen

gel was also studied by the same group.75 In another study,
gelatin, which is a hydrolyzed derivative of collagen, has
been methacrylated to become photocrosslinkable. This
acrylated gelatin showed promising aspects for supporting
cell proliferation, and cell-laden photopatterned metha-
crylated gelatin was successfully used to direct, elongate,
and align myoblasts in a 3D hydrogel environment76,77

(Fig. 7). These techniques rely on the limitation of cell
migration by molding them in groove-like structures,
which induced their alignment in a 3D environment im-
proving their functionalities.

Cell alignment by surface patterning

Surface patterning is a general term used to describe the
modification of a biomaterial’s surface by patterning tech-
niques. Soft lithography, which was introduced by the
Whitesides group in the late 1990s to facilitate microfluidic
device fabrication and fast prototyping, has also been used
to pattern surfaces.78 This technique is based on the use of
an elastomeric master that is easy to mold or emboss and
can be used directly as substrate for biological applications
or as mold. Among the elastomers used, PDMS is the most
popular elastomer for biological applications, and the con-
struction of a PDMS master is related to another mold
prepared by conventional photolithography approaches.79–81

Soft lithography is widely used for the patterning of cells and
proteins through using patterning techniques such as micro-
contact printing, microfluidic patterning, and stencil micro-
patterning.23,82,83 To guide cells on a surface, patterning of
ECM proteins, such as collagen, fibronectin, or laminin, is
widely used, as is the printing of self-assembled monolayers
(SAMs) with cell-repellant molecules, such as PEG deriva-
tives, poly(ethylene oxide)-b-poly(propylene oxide) (PEO-
PPO) block copolymer, or copolymer surfactant with primary
hydroxyl groups, thereby limiting the area where cells can
settle. A combination of printed cell repellant and cell-ad-
hesive molecules could also be used84–86 (Fig. 8). Another
technique is showed by Shimizu et al., who used a stencil
membrane to micropattern myoblasts and form a pattern of
single myotubes87 (Fig. 9). Direct patterning of myoblasts by
inkjet printing techniques has been also done to improve the
cell alignment and tissue formation.88

Cell patterning has been mostly used to study cell be-
havior, such as cell migration, proliferation, cell–cell in-
teractions, and drug screening, in a 2D environment.
However, this approach is also appealing for the creation of
3D tissue-like constructs via cell-sheet-based tissue engi-
neering. Indeed, various methods exist for the harvesting of
prepatterned cell sheets. For example, Nagamine et al. used
a fibrin gel to embed aligned myotubes into a 3D hydrogel
system.89 Similarly, Huang et al. transferred aligned myotubes
from a parallel micropattern of poly(2-hydroxyethyl methac-
rylate) (pHEMA) to a type I collagen gel overlaid on the mi-
cropattern. After 3 days of culture, the collagen sheet was
rolled around a biodegradable polymeric mandrel to fabricate a
tubular muscle-like construct with aligned myotubes.90 Poly-
meric nanomembranes, with exceptional flexibility were also
micropatterned by microcontact printing with lines of fibro-
nectin plus multiwalled carbon nanotubes (MWNTs) to en-
hance the cell alignment and myotube formation and then
rolled up to fabricate a tubular structure.91 In an interesting

FIG. 5. Oriented cellulose nanowhiskers of 10–15-nm
diameter were produced by spin-coating. The response of
myoblasts to the surfaces was assessed by atomic force
microscopy 12 h after seeding. The inset picture shows a
large-scale image of the whole cell (inset scale bar = 20 mm),
whereas the yellow arrow indicates the direction of the
nanowiskers. The main image shows a closeup scan of the
area bounded by the dashed box in the inset picture (scale
bar = 5 mm), whereas the white arrows indicate filopodia.
Reprinted with permission from Dugan et al.66 Copyright ª
2010, American Chemical Society.
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FIG. 6. (a) A Silicon wafer coated with
SU-8 was patterned by UV through (b) a
photomask (scale bars = 2 mm; inset =
500mm). (c) Optical profile of the master
mold. (d) Polydimethylsiloxane (PDMS)-
negative replica (scale bars = 1 mm; inset
vertical cross-section 500 mm). (e) PDMS-
positive replica (scale bars = 1 mm; inset
vertical cross-section 500 mm). (f) Cells in
hydrogel prepolymer solution were poured
in the PDMS mold and incubated at 37�C to
allow (g) hydrogel polymerization. (h) The
culture medium was then added and the
cells were cultured for 2 weeks. The hy-
drogel was fixed on a Velcro frame (scale
bars in f–h 5 mm). Reprinted with per-
mission from Bian et al.72 Copyright ª
2009, Nature Publishing Group. Color
images available online at www.liebertpub
.com/teb

FIG. 7. 3T3 fibroblasts encapsulated in
5% GelMA hydrogels patterned into rect-
angular microconstructs [50mm
(w) · 800 mm (l) · 150 mm (h) with 200-mm
interlines]. (A) Hydrogel stained with Rho-
damine B showing initial microconstruct at
day 0 and phase-contrast images of cell-la-
den microconstructs at days 1, 4, and 7 of
culture. The red arrows indicate points of
contact between neighboring lines at day 4
of culture, with tissue convergence at day 7
of culture. (B) Three-dimensional (3D) tis-
sue construct (1 · 1 cm2) at day 7 of culture.
(C) F-Actin staining showing the middle of
the 3D tissue construct with aligned actin
fibers. Reprinted with permission from Au-
bin et al.77 Copyright ª 2010, Elsevier.
Color images available online at www
.liebertpub.com/teb
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study, prevascularized 3D muscle tissue was constructed by
stacking multiple layers of endothelial cells sandwiched by
myoblast sheets.92 Petri dishes covalently grafted with the
temperature-responsive polymer poly(N-isopropylacrylamide)
were used to harvest the different cell sheets, and the handling
of the cell sheets was secured by a plunger coated with a
hydrogel matrix. By patterning hydrophilic polymer on ther-
moresponsive surface and by using a plunger coated with
gelatin to harvest the different cell sheets of human skeletal
myoblasts, Takahashi et al. showed that an anisotropic cell
sheet placed on the top of four random cell sheets stacked
together induced the myoblasts and the ECM alignment in the
whole construct.93 Recently, Guillaume-Gentil et al. described
a method to fabricate and harvest micropatterned heterotypic
cell sheets by local electrochemical dissolution of a poly-
electrolyte coating94 (Fig. 10). Such methods introduce the
possible creation of cocultured harvestable cell sheets and the
growth of more complex tissue constructs via cell-sheet-based
tissue engineering.

Cell alignment by mechanical stimulation

Lack of stimulation and mechanical force causes muscle
degeneration, as occurs in disabled individuals or during

skeletal muscle atrophy in the microgravity of spaceflight.
Although the role of mechanical stimulation has been
widely studied in gene regulation, endogenous protein
regulation, accumulation, and metabolic products,95,96

it has been less studied as a tool in SMTE. However, it has
been reported that under continuous uniaxial strain, avian
myoblasts and L6 rat skeletal muscle cells cultured on an
elastic substratum differentiated into myotubes oriented
parallel to the direction of strain, whereas under stretch-
ing/relaxation cycles, the myotubes were aligned perpen-
dicular to the stretch direction.31,97,98 Other studies of
myoblasts encapsulated in a collagen hydrogel and treated
by continuous uniaxial strain also showed the formation of
myotubes parallel to the direction of the strain.5,99,100 One
hypothesis to explain the difference in the angle of cell
and myotube orientation between cells cultured under
continuous strain or under stretching/relaxing cycles is the
appearance of micro-ripples or micro-cracks in the matrix
or in the elastomer surface perpendicular to the stretch di-
rection, as observed for PDMS surfaces treated with
stretching/relaxing cycles.101 The passive tension observed
during the coalescence of a collagen gel has also been used
to align myoblasts between two posts to form aligned
myotubes.3

FIG. 8. Micropatterned substrate building process and cell culture. (A) Schematic showing the preparation of the mi-
cropatterned substrate. (B) Phase-contrast images of the different micropatterns with cells: lines of different widths (300 mm,
150 mm, 80mm, 40mm, 20mm, and 10mm), tori of different inner diameters (40mm, 100mm, and 200 mm), and hybrid
patterns of different arc degrees (30�, 60�, and 90�), (scale bar = 100mm). Reprinted with permission from Bajaj et al.84

Copyright ª 2011, Royal Society of Chemistry. Color images available online at www.liebertpub.com/teb

FIG. 9. Schematic showing the micropatterning of myotubes by the use of a thin PDMS stencil membrane. A BSA-coated
membrane was attached on the surface of a Petri dish and C2C12 were seeded on the membrane. After culturing in differentiation
medium, the membrane was peeled off under a microscope to free the micropatterned myotubes, which can be removed. Reprinted
with permission from Shimizu et al.87 Copyright ª 2010, Elsevier. Color images available online at www.liebertpub.com/teb
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Cell alignment by magnetic or electrical fields

Electrical fields are often used in single-cell manipulation
and cell sorting techniques but less in the engineering of a
whole tissue. Indeed, a cell placed in an alternating elec-
trical field polarizes into a dipole and is subjected to a
dieletrophoretic force F102 given by the formula:

F¼ 2pr3emj(ec� em)=(ecþ 2em)j=E2,

Where r is the radius of the cell, em is the medium permit-
tivity, ec is the cell permittivity, VE is the magnitude of the
electrical field, and j(ec - em)/(ec + 2em)j is the real part of the
Clausius-Mossotti factor.103 If j(ec - em)/(ec + 2em)j > 0, then a
positive dielectrophoresis (DEP) force F exists that induces
the cell to move toward regions with a high electrical field. If
j(ec - em)/(ec + 2em)j < 0, a negative DEP force F exists that
repels the cell toward regions of low electrical field. As the
magnitude of the DEP force F is inversely proportional to the
electrode gap, the electrodes are usually designed to be close
to each other to allow the induction of an electrical field of
several hundred V/cm that is suitable for cell manipulation.104

Thus, DEP has been used to pattern several cell types for
coculture and tissue engineering applications105–107 (Fig. 11).

Ramon-Azcon and colleagues used DEP to pattern
C2C12 myoblasts in a hydrogel matrix, which resulted in a
highly aligned muscle tissue construct.32,33 MWNTs have
also been included into hydrogel and aligned by DEP im-
proving the hydrogel electrical conductivity and favoring

the cell alignment and the myotube formation.108 Some
notable characteristics of the DEP method include accuracy,
high cell manipulation speed, and the ability to scale-up.109

It has also been shown that a static magnetic field alone can
induce the alignment of L6 myoblasts.110 However, the
mechanism underlying this phenomenon is not well under-
stood. Yamamoto et al. reported that C2C12 cells were
elongated along the axis of a magnetic field after endocy-
tosis of magnetic nanoparticles.111 By using this method of
magnetic-force-based tissue engineering,112 which promotes
tissue organization under a magnetic field, Akiyama et al.
fabricated 3D tissue architecture,113 whereas Yamamoto
et al. fabricated 200-mm-thick skeletal muscle tissue.111,114

To fabricate a 1.9-mm-thick skeletal muscle tissue, Yama-
moto et al. combined the application of a magnetic field to
C2C12 cells loaded with magnetic nanoparticles to induce
tissue organization with the use of cell culture in a perfused
hollow fiber reactor that allowed the maintenance of high
cell density by supplying oxygen and nutrients.115

Induction of Cell Differentiation from Myoblasts
to Myotubes

Cell differentiation

Myogenesis is the differentiation process that drives the
formation of multinucleated myotubes. However, cell pro-
liferation and phenotypic differentiation are mutually ex-
clusive events. Therefore, myoblasts have to exit the cell cycle

FIG. 10. Micropatterning of heterotypic cell sheets. (a) Patterning of an SU-8 layer spin coated on an indium tin oxide
(ITO) electrode by UV through a photomask. (b) After development, SU-8 micropatterns are formed on the ITO electrode.
(c) The substrate is then coated with a weak cell-adhesive polyelectrolyte and (d) subjected to electrochemical polarization,
which induced the dissolution of the polyelectrolyte only from the ITO regions. (e) The ITO regions are backfilled with a
cell-repellent polymer PLL-g-PEG and (f) a first cell type is seeded whereas the nonadherent cells are washed away. (g) The
PLL-g-PEG monolayer is then removed by a second electrochemical step. (h) The ITO regions are backfilled with PLL-g-
PEG/PEG-RGD, which is a cell-adhesive monolayer. (i) The second cell type is seeded and the nonadherent cells are
washed away. (j) After 1 day of culture, the PLL-g-PEG/PEG-RGD monolayer is dissolved by a final electrochemical step,
which allows the whole cell sheet to detach. Indeed, due to their weak interaction with the substrate, the cells on weak cell-
adhesive regions also detach easily. PEG, poly(ethylene glycol). Reprinted with permission from Guillaume-Gentil et al.94

Copyright ª 2010, Springer Science + Business Media, LLC. Color images available online at www.liebertpub.com/teb
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to enter into myogenesis. During this process, mononucleated
myoblasts, which have a spindle or a polygonal shape, migrate
toward each other and aggregate. Following this cell adhesion,
the myoblasts align in an end-to-end configuration41 by the
parallel apposition of their membranes.116 Membrane fusion
then occurs, and the cells fuse together to generate a multi-
nucleated structure.117 Initially, myoblasts fuse with each
other to form small nascent myotubes, which subsequently
fuse with additional myoblasts to form large and mature
myotubes.118,119 All of these successive events are regu-
lated by numerous factors, such as transcription factors, and
involve several protein regulatory mechanisms, which are
discussed in the following subsections.

Transcription factors. Nuclear factor of activated T cell
(NFAT) is regulated by calcium and is involved in the
transcription of numerous cytokines, such as IL-2, IL-3, IL-
4, IL-5, and tumor necrosis factor a (TNFa).120 Upon cal-
cium activation, calcineurin dephosphorylates the NFAT
protein, which translocates to the nucleus, binds to DNA,
and actives gene transcription. Three isoforms of this pro-
tein (NFATc1, c2, and c3) are present in myoblasts, and
their translocation to the nucleus occurs at different stages of
myogenesis. Thus, NFATc3 is activated only in myoblasts,
and NFATc1 and NFATc2 are activated in myotubes.121

NFATc2 is notably involved in nascent myotube formation
and growth.122 Myogenic regulatory factors (MRFs) include
MyoD, myogenin, Myf-5, and MRF4 (also called Herculin
or Myf-6),123 which are expressed exclusively in skeletal
muscle. Each of these factors activates myogenesis and
forcing their expression in a variety of nonmuscle cell types
converts these cells into muscle cells.124 These factors are
characterized by a 70-amino-acid sequence containing a
basic helix-loop-helix structure (bHLH) that is a DNA-
binding domain.125 Mutagenesis studies have shown that the
HLH motif is required for dimerization, whereas the adja-
cent basic motif is involved in DNA binding and targets a
CANNTG sequence known as the E-box.126 MyoD is a 318-
amino-acid phosphorylated nuclear protein. MyoD and Myf-
5 can functionally substitute for one another to activate the
muscle differentiation program127 and play a crucial role in
the determination and maintenance of myogenic identity.
Both of them are able to activate their own transcription and
to cross-activate the other MRFs. MyoD mRNA and Myf-5

mRNA are expressed before and after myoblast differenti-
ation. When activated, MyoD induces cells to permanently
exit the cell cycle by increasing the expression of p21,
which is an inhibitor of the cyclin-dependent kinases
(Cdks).128,129 If MyoD and Myf5 have been shown to
specify the myogenic lineage in a redundant manner and
therefore are involved in the generation of myoblasts, then
Myogenin plays a major role in the differentiation of
myoblasts into multinucleated myotubes and its expression
marks the entry of myoblasts into the differentiation path-
way.130 However, the trigger that switches cells from pro-
liferation to differentiation remains unknown. Andres and
Walsh have shown that myogenin is expressed early before
cell cycle exit and that the next step into myogenesis in-
volves an increase in the number of cells expressing myo-
genin and the cell-cycle inhibitor p21.131 Indeed, Cdks are
enzymes that are involved in cell-cycle progression and their
inhibition by cyclin-dependent kinase inhibitors, such as p21
and p57, which act in a redundant way, induces G1/S
transition arrest and cell cycle exit concomitantly with in-
creased activity of retinoblastoma protein (Rb), which to-
gether with myogenin activates the differentiation.132 It has
been shown that the differentiation of myotubes can be re-
versed in cells with low expression of myogenin, thereby
inducing myotube dislocation into mononucleated cells ca-
pable of DNA replication.133 MRF4 is also able to induce
myogenic differentiation.134 However, MRF4 is usually
expressed during the later phase of myogenesis during
myotube maturation.135 Gap junctions are present on myo-
blasts prior to myotube formation and disappear after cell
fusion. Studies have shown that blocking gap junctions with
a compound such as octanol not only impairs myoblast fu-
sion136 but also inhibits the activation of myogenin and
MRF4.137 The myocyte-specific enhancer factor-2 (MEF-2)
is a nuclear factor that activates muscle-specific transcrip-
tion and belongs to the MCM1, Agamous, Deficiens and
Serum response factor (MADS) box family of transcription
factors.138 The MADS-box is a motif of 57 amino acids that
is localized at the N-terminus of MEF-2 members and is a
DNA-binding domain. It is located adjacent to a sequence of
29 amino acids referred to as the MEF2 domain that rein-
forces DNA binding and dimerization.139 In vertebrates,
MEF-2 members include MEF-2 A, MEF-2 B, MEF-2 C,
and MEF-2 D, all of which bind to an A + T-rich DNA

FIG. 11. Patterning of two different cell
populations by dielectrophoresis (DEP). (A)
An interdigitated array of four-electrode
subunit was used to pattern cells. (B) By
applying an AC voltage, the n-DEP force
was induced and cells were directed toward
weaker region of electric field strength. (C)
Cells in excess were removed. (D) A second
cell type was loaded into the device and
guided to other areas by changing the AC
voltage mode. Reprinted with permission
from Suzuki et al.107 Copyright ª 2008,
Elsevier. Color images available online
at www.liebertpub.com/teb
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sequence [CTA(A/T)4TAG].140 The MEF-2 family cooper-
ates with the MRF family in the activation of muscle gene
expression via a direct interaction between the respective
DNA-binding domains, which results in a protein–protein
association that synergistically increases the transcription
and myogenic activity of MRF members.141–144

Other proteins that regulate myogenesis. Because myo-
genesis is regulated by a complex signaling pathway with
multiple entry points and steps, many extra- and intra-cellular
molecules and proteins positively or negatively affect this
pathway. For example, growth factors, such as fibroblast
growth factor (FGF) and transforming growth factor b (TGF-
b), are potent inhibitors of myoblast differentiation.145,146 FGF
impairs the binding of myogenic helix-loop-helix proteins to
DNA by inducing the phosphorylation of their basic region by
protein kinase C (PKC).147 TGF-b inhibits the activity of
myogenin and MyoD without affecting their ability to bind
DNA.148 It has been shown that TGF-b can induce the trans-
location of MEF-2 from the nucleus to the cytoplasm, thereby
preventing it from participating in an active transcriptional
complex.149 Table 1 depicts some of the molecules involved
in the regulation of myogenesis,122 and we suggest that read-
ers refer to other articles for detailed examples of various
signaling pathways involved in myogenesis.150–153

Molecular induction of myoblast differentiation

Serum deprivation and other biochemical induc-
tions. Myoblast differentiation can be molecularly induced

by the absence of inhibitory molecules or by the presence of
stimulatory molecules, and the surface chemistry of the
substrate on which cells are cultured also plays a key role.
Thus, serum deprivation is often used to induce myoblast
differentiation into myotubes. Indeed, for myoblasts, the
decision to proliferate or to differentiate is determined by
the presence or the absence of serum. Among the different
factors that downregulate the MRF members, Id (for in-
hibitor of DNA binding) is an HLH-protein that has the
HLH motif but lacks the adjacent basic motif involved in
DNA binding.154 Id is expressed at a high level in prolif-
erating cells and is downregulated by serum starvation.155

By forming nonfunctional heterodimers with MRF mem-
bers, Id impairs their ability to bind DNA.156 The expression
of several genes, including c-Fos and c-Jun, is also rapidly
induced by serum and represses the transcriptional activa-
tion induced by myogenin and MyoD.147 Another effect of
serum deprivation is cell-cycle arrest via Cdk inactiva-
tion.132 In contrast, because myogenesis is regulated by a
complex signaling pathway as described just now, the ad-
dition of certain molecules or proteins into the culture me-
dium may induce or favor myoblast differentiation. For
example, by using the nitric oxide (NO)–generator DETA-
NO, Pisconti et al. showed in vitro in C2C12 cells and
in vivo in mice that NO via cGMP induced the generation of
follistatin (FST), which induces myoblast fusion.157 Simi-
larly, it has been shown that myoblasts express netrin-3 and
its cell-surface receptor neogenin. Treatment of C2C12 cells
with recombinant netrin induces myotube promotion and
NFAT activation, which results in the formation of larger

Table 1. Molecules Acting on Mammalian Myogenesis

Molecule name Effect on Reference

Membrane proteins
Integrins (VLA-4, b1), integrin receptor VCAM-1 Myoblast fusion 384
Nephrin Myotube accretion 385
K + ion channel, T-type Ca2 + channel Intracellular Ca2 + 386,387
Epidermal growth factor receptor Myoblast differentiation 388
Protein GRP94 Myoblast fusion 389
ADAM 12, Calveolin-3 Myoblast fusion 384,390
Notch receptor Satellite cell regulation 327,391
Mannose receptor Myotube accretion 119

Intracellular proteins
Calpain, Calmodulin Myoblast fusion 392
Calcineurin Myoblast recruitment 393
AMPKinases Protein catabolism 187,394
NFATC(1,2,3) Gene activation 394
Yap Hippo signaling 395
MAP Kinases MEF2, stress signaling, activator mTORC1 150,185
TSC1-TSC2 mTORC1 inhibitor 167
mTOR Regulation protein anabolism 166
FoxO/Smad Protein catabolism 176

Extracellular factors
PGE 1, PGF2a, arachidonic acid Myoblast fusion 159,396
IL-4, IL-6, LIF Myoblast fusion, satellite cells 397
Ca2 + Signaling pathway 387
Cathepsin B Autophagy 398
IGF-1, Insulin, Androgen, GH Protein anabolism 399
Myostatin, glucocorticoids Protein catabolism 227,400
NO Regulation satellite cell, myoblast fusion 401

Reprinted and adapted with permission from Horsley and Pavlath.122 Copyright ª 2004, S. Karger AG Basel.
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myotubes when compared with controls.158 Arachidonic
acid supplementation also enhances myotube growth.159

Cytokines and growth factors may also activate the JAK-
STAT pathway regulating positively (or negatively) the
myogenic differentiation.160 Material surface chemistry and
ECM may also favor myoblast differentiation. Indeed,
in vivo, muscle fibers are wrapped by basal lamina, which is
an ECM that contains mainly laminin, collagen IV, collagen
I, and proteoglycans. As ECM is a key component of the
cellular environment, some research groups have used di-
rectly the ECM extracted from muscles to improve cell
culture and differentiation in 2D systems,161,162 whereas
others have used a 3D hydrogel environment mixed with
different ECM components.163 ECM acts on cell-cycle
progression and cell differentiation through the binding of
transmembrane integrin receptors and the activation of
signaling cascades. Chemical patterning of the material
surface by SAMs is also a versatile technique for surface
modification23,164 that can be used to induce cell differen-
tiation. Indeed, SAMs and notably alkanethiols, which are
molecules composed of a head group with a sulfhydryl (-SH)
and a long alkyl tail that can be functionalized, form spon-
taneously ordered monolayers through the adsorption of their
head group to the surface of the substrate. By using fibro-
nectin-coated SAM surfaces to present defined functional
chemicals to C2C12 cells, Lan et al. showed higher myoblast
differentiation on surfaces with functional groups following
the order OH > CH3 > NH2 = COOH, which was correlated
with higher a5b1 integrin binding.165

Cellular regulation of protein anabolism. In cells, the
protein homeostasis is balanced by protein synthesis and
degradation to sustain anabolic processes and energy pro-
duction. This important regulation is mainly controlled by
the mammalian target of rapamycin (mTOR) signaling
pathway.166 mTOR is a 289-kDa serine/threonine kinase
that forms two different complexes 1 (mTORC1) and 2
(mTORC2), respectively, sensitive and insensitive to rapa-
mycin.167 The mTORC1 complex is formed by mTOR, the
regulatory-associated protein of mTOR (Raptor), the mam-
malian lethal with SEC13 protein 8 (mLST8, also known as
G protein b-subunit-like protein [GbL]), and the proline-rich
Akt substrate-40 kDa (PRAS40), whereas mTORC2 com-
plex is formed by mTOR, the rapamycin-insensitive com-
panion of mTOR (Rictor), and mLST8.168,169 When
activated, mTORC1 promotes the cell growth by enhancing
the protein synthesis through the phosphorylation and acti-
vation of the ribosomal S6 kinase (S6K), forms 1 (S6K1)
and 2 (S6K2), activating downstream the RNA transla-
tion.170 Moreover, phosphorylated mTORC1 induces also
the phosphorylation and inhibition of the translational re-
pressor named eukaryotic initiation factor binding protein 1
(4EBP1) by inducing its dissociation from the eukaryotic
translation initiation factors 4E (eIF4E) that assembles with
eIF4G and eIF4A to form the trimeric complex eIF4F ini-
tiating the RNA translation.171 Upstream, mTORC1 is reg-
ulated by the tuberous sclerosis complex also named
hamartin-tuberin complex (TSC1-TSC2), which inhibits
mTORC1 by stimulating the GTPase activity of the protein
Ras homologue enriched in brain (Rheb) via the GTPase
activating protein (GAP) domain of TSC2, increasing the
conversion of Rheb-GTP into Rheb-GDP.167 The TSC1-

TSC2 complex is a hub of signal transduction modulating
mTORC1 activity in function of the signals received from a
large number of different signaling pathways. This allows
mTORC1 to sense among different signals the level in
amino acid, in energy (ATP), in oxygen, and in growth
signaling for regulating the cellular growth.

Upstream to TSC1-TSC2, one of the important signali-
zation pathways transduced the signal by Akt also named
protein kinase B (PKB). Akt is a serine/threonine kinase that
has three isoforms, Akt1, Akt2, and Akt3,172 and is a central
node of signalization, notably by growth factors.173 Akt acts
positively on the protein synthesis regulation by directly
phosphorylating TSC2 inhibiting the GAP activity of TSC1-
TSC2 complex toward Rheb, which allows the accumulation
of Rheb-GTP and the activation of mTORC1.174 Moreover,
Akt can also inhibit the protein degradation by phosphory-
lating members of the forkhead box O (FoxO) family of
transcription factors impairing them to translocate into the
nucleus. The FoxO proteins control the ubiquitin-proteasome
and autophagy-lysosome systems, which are two main pro-
teolytic pathways in cell.175,176 Therefore in muscle, the ac-
tivation of FoxO1 and FoxO3 induces their translocation
from the cytosol to the nucleus to promote the transcription of
genes, such as the muscle atrophy F-box also named atrogin1
(MAFbx),177 the muscle ring finger-1 (MuRF1),178 and the
regulated in development and DNA damage response-1
(REDD1),179 inducing muscular atrophy. Upstream, Akt is
regulated by the phosphatidylinositol-3-kinase (PI3K), which
upon activation recruits its substrate phosphatidylinositol-4-
5- biphosphate (PIP2) to generate the second messenger
phosphatidylinositol-3-4-5- triphosphate (PIP3), which in
association with the 3¢-phosphoinositide-dependent kinase-1
(PDK1) activate Akt.180

However, other signaling pathways, such as the extra-
cellular signal regulated kinase (ERK) pathway, the p38
mitogen activated protein kinase (MAPK) pathway, or the 5¢
adenosine monophosphate-activated protein kinase (AMPK)
pathway, can act positively or negatively on the TSC1-
TSC2 complex.181 The ERK pathway activates mTORC1 by
phosphorylating and inhibiting TSC2 via p90 ribosomal S6
kinase.182 ERK also upregulates the protein anabolism by
phosphorylating and inhibiting FoXO3a protein, which is
then degraded via the ubiquitin proteasome pathway.183 The
P38/MAPK is involved in proinflammatory cytokines and
other stress signals.184 The p38/MAPK pathway activates
mTORC1 by inhibiting the TSC1-TSC2 complex via the
phosphorylation of TSC2.185 The AMPK pathway acts as a
cellular energy sensor.186 In low-energy (intracellular ATP)
status, 5¢ adenosine monophosphate (AMP) level increases
and activates AMPK. To increase the energy production via
catabolic processes, AMPK directly phosphorylates TSC2
and Raptor impairing mTORC1 to phosphorylate its sub-
strate and to activate the protein synthesis pathway.187,188

The level of oxygen can also be sensed through the AMPK
pathway since in hypoxia condition the ATP level will be
reduced. Another mechanism involves the activation of
TSC2 due to its dissociation from the inhibitor proteins 14-
3-3 after the binding of REDD1, which is upregulated under
hypoxia condition.189 Other signaling mechanisms have also
been observed. Thus, the TNFa phosphorylates TSC1 via
the inhibitory kB kinase b (IKKb) enhancing the dissocia-
tion and inactivation of the TSC1-TSC2 complex, which
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activates the mTORC1 pathway and the protein synthe-
sis.190 The glycogen synthase kinase 3 (GSK3) inhibits
mTORC1 by phosphorylating and activating TSC2 via
AMPK. However, Wnt signaling inhibits the phosphoryla-
tion and activation of TSC2 by the GSK3 that upregulates
mTORC1.181 Thus, important cell signaling networks are
complex, containing several points of regulation, signal di-
vergence, and crosstalk with other signaling cascades.

Muscle anabolism induced by growth factors. Muscle
growth is regulated by hormones, such as growth hormone
(GH), insulin like growth factor-1 (IGF-I) and 2 (IGF-II),
testosterone, and 5-a-dihydrotestosterone (DHT).191,192 It is
well known that testosterone injection favors protein syn-
thesis, whereas androgen deficiency induced muscle atro-
phy, reduction of IGF-1 level, reduction of muscle androgen
receptor (AR) expression, and increase of fat store.193

Classically, androgens like testosterone mediated their ef-
fects via the AR.194 AR is a 110-kDa ligand-inducible
transduction factor localized in the cytoplasm complexed by
heat shock proteins (e.g., HSP 90 and HSP 70) and other
chaperones.195 Upon ligand binding, AR is released from
its chaperones, translocates to the nucleus, binds to the an-
drogen-responsive elements, and actives directly, or indi-
rectly via the recruitment of coactivators or corepressors, the
gene transcription.196 This mechanism of signalization de-
fined the genomic pathway. However, testosterone may also
act faster trough nongenomic pathways involving surface
membrane receptors.197,198 Thus, in the AR-negative rat
L6 cell line, testosterone signaling involves a G-protein-
coupled receptor with increase of intracellular calcium
(Ca2 + ) acting as second messenger, and inducement of the
cell proliferation via the PKC and ERK, while the cell dif-
ferentiation was induced through the protein kinase A
(PKA).199 Testosterone signal can also activate the MAPK
pathway via the tyrosine kinase Src interacting with AR or
the epidermal growth factor receptor.200–202 AR has also
been shown to interact directly with the p85a subunit of
PI3K to activate the PI3K/Akt pathway.203 Since AR can
activate numerous signaling pathways, the development of
AR ligands dissociating the anabolic effects from the an-
drogenic effects of androgens, named selective androgen
receptor modulators, is an important direction of research
for therapeutic applications.194 Recent studies have shown
that the anabolic effect of testosterone on muscle is trans-
duced via the Akt/TSC2/mTORC1 pathway previously
described.204,205

Insulin, IGF-I, and IGF-II are produced by the liver under
the stimulation of GH and have also an anabolic effect on
muscle.206 After binding its receptor (IR) insulin activates
the insulin receptor substrate (IRS-1) by tyrosine phos-
phorylation, which acts as docking site for proteins with Src
homology 2 (SH2) domains, such as the P85 subunit of
PI3K. This leads to the generation of the second messenger
PIP3 and the activation of Akt/TSC2/mTORC1 pathway
resulting in anabolic effect on muscle.167,175 However, a
feedback mechanism exists to regulate the insulin signaling
since the activation of S6K1 by mTORC1 induces the ser-
ine/threonine phosphorylation of IRS-1 reducing its stabili-
ty.207,208 It has also been shown that insulin activated the
phosphorylation of PRAS40 by Akt impairing its inhibitor
effects on mTORC1.209

IGF-I and IGF-II are also important regulators of muscle
mass.210 As insulin, they can in addition be produced by
muscles and act in an autocrine/paracrine fashion. Similarly,
they signal through the PI3K/Akt/TSC2/mTORC1 pathway
but via their respective receptors IGF-IR and IGF-
IIR.197,211,212 A negative autoregulatory loop of myogenesis
has also been observed, since IGF-I can also activate the
phospholipase C gamma through the PI3K pathway pro-
moting the release of calcium from the intracellular stores,
which induces the transcription of myostatin via calcineurin/
NFAT pathway.213,214 During myogenesis, it has been
shown that IGF-II auto-upregulates its gene expression via
PI3K/Akt and P38 MAPK pathways, while downregulates
IGF-I gene expression through mTOR.215 Interestingly in a
point of view of biomaterial engineering, the focal adhesion
kinase is required for the anabolic signal of IGF-I mediated
through TSC2/mTOR/S6K1 pathway.216,217 Under exercise
(mechanical or electrical stimulation), human muscles ex-
press spliced variants of the IFG-I gene that produce three
isoforms of IGF-I.218 One isoform is IGF-IEa similar in
action to the IGF-I produced by the liver, the second is IGF-
IEb, whereas the third one is IGF-IEc, also named me-
chanogrowth factor (MGF), containing an E domain of 49
bases that modulates the signalization.219–221 IGF-IEa has
been involved in the promotion of myoblast differentia-
tion222 whereas MGF has been shown to recruit and to
stimulate the proliferation of satellite cells (SCs) in corre-
lation with the activation of the ERK pathway.223,224 The
IGF-I signaling pathway crosstalks with the androgen sig-
naling pathway since androgens increase the IGF-I level in
serum and the IGF-I mRNA expression in muscle.193,225

Muscle catabolism induced by myostatin. In cells, the
protein catabolism is secured via both the ubiquitin pro-
teasome system and the autophagy/lysosome pathway with
the activation of FoXO, NF-kB, and Smads transcription
factors, whereas the protein anabolism is secured by the PI3/
Akt/mTORC1 pathway.226,227 Myostatin or growth differ-
entiation factor 8 (GDF-8) belongs to the TGF-b family,
which are known inhibitors of myogenic differentiation and
muscle growth.228 Myostatin is secreted by muscle and acts
as an autocrine/paracrine fashion inhibiting myoblast dif-
ferentiation, and maintaining SCs quiescents.229 After
cleavage of the promyostatin complex, the mature myostatin
binds to the transmembrane receptor activin receptor type
IIB (ActRIIB), which recruits the type 1 transmembrane
activin receptor-like kinase 4 or 5 (ALK4 or ALK5).230 This
induces the phosphorylation of Smad proteins (Smad name
comes from mothers against decapentaplegic) 2 and 3, and
the recruitment of Smad 4 to form a complex Smad 2,3,4,
which translocates from the cytosol to the nucleus and ac-
tives the gene transcription of atrophy-related genes or
‘‘atrogenes,’’ such as Murf-1 an Atrogin-1.227 As there is a
balance between protein catabolism and protein anabolism,
if the protein catabolism is enhanced then the protein
anabolism is decreased and vice versa. Thus, myostatin in-
hibits the Akt/mTORC1/S6K and the p38/MAPK pathways,
whereas it enhances the FoXO protein activity and the IkBa/
NF-kB pathway.213,231 Inhibition of myostatin signaling
allows the rescue of muscle loss. FST is a secreted glyco-
protein that antagonizes members of the TGF-b family like
myostatin232 and rescues impaired myoblast differentiation
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by myostatin.233 The transcriptional coactivator PGC-1a is
induced in muscle by exercise and favors mitochondrial
genesis, resistance to muscle atrophy, and endurance.226 A
spliced variant, PGC-1a4, also induced by exercise re-
presses myostatin expression and favors hypertrophy by
inducing IGF-I.234 It has also been shown that a combina-
tion of micro-distrophin gene replacement and FST restored
muscle function in dystrophic mice.235 Indeed, myostatin
upregulation has been observed in many diseases involving
muscle loss, such as muscular dystrophy, sarcopenia, and
cancer cachexia. Therefore, targeting myostatin with
myostatin inhibitors for pharmacological applications is
interesting.236,237

Electric and magnetic induction of myoblast
differentiation

Mechanical and electrical stimulation are linked to mus-
cle tissue formation. In the laboratory, an electrical stimu-
lator can be used to easily mimic neuronal muscle
stimulation with controlled parameters.238 In one example,
Flaibani et al. applied 3-ms pulses with an amplitude of
70 mV/cm for 30 s to muscle precursor cells cultured on a
micropatterned poly(L-lactic acid) membrane.239 They ob-
served an increase in myotube density with a 30% increase
in the release of nitrite (NO2

- ), which is a signaling mol-
ecule that is involved in myoblast fusion and myotube
growth.157 Kawahara et al. applied 2-ms pulses of 50 V for
5 min/day to L6 rat myoblast cultures and observed accel-
erated myotube differentiation with the formation of thick
myotubes followed by contracting striated muscle cells.240

The electrical stimulation was achieved by plunging elec-
trodes into the culture medium. The drawback of this
method is that most of the current lines cross under the
culture medium rather than under the cells. In addition,
electrolysis and the release of toxic products in the medium
may result from this type of setup and should be avoided.
Thus, to focus the current toward the myotubes, Kaji et al.
cultured C2C12 cells on a conductive porous membrane and
adopted a vertical setup for the electrodes.241 To protect the
cells, Nagamine et al. transferred cultured myotubes to a
fibrin gel, which they placed on microelectrode arrays for
electrical stimulation (amplitude 2 V, duration 3 ms, fre-
quency 10 Hz, train 1 s, and interval 10 s). The fibrin gel had
been previously coated with a conductive polymer to im-
prove interfacial electrical capacity.89 Other groups have
also opted to use electrically conductive polymers to provide
a matrix environment with safer electrical stimulation for
the cells. In such cases, the cells can be encapsulated in the
conductive polymer, seeded on the conductive polymer, or
encapsulated in a polymer placed on electrodes. Thus, Sir-
ivisoot and Harisson studied the formation of myotubes on
electrically inductive composite scaffolds generated from
electrospun polyurethane (PU) and carbon nanotubes.242

They showed that increased myotube formation was corre-
lated with increased electrical conductivity because of the
presence of carbon nanotubes. Also, Sekine et al. printed
poly(3,4-ethylenedioxythiophene) (PEDOT) electrodes on
an agarose hydrogel and electrically stimulated contractile
myotubes embedded in a fibrin gel deposited on the PED-
OT/agarose sheet,243 whereas Ido et al. embedded PEDOT
electrodes in a hydrogel.244 In another strategy, Mawad

et al. combined the advantages of hydrogels (e.g., me-
chanical properties, hydrated environment, and biocompat-
ibility) and conducting polymers to build a conducting
polymer hydrogel on which C2C12 cells proliferated.245 Ku
et al. electrospun a blend of polycaprolactone with poly-
aniline to combine the topographical constraint of aligned
fibers with electrical conductivity and observed a synergistic
effect on myotube formation.246

Electrical stimulation not only increases the myotube
density by increasing the speed of formation but also
changes the nature of the muscle fibers and acts at the
molecular level of muscle fiber formation. For example,
after 8 days of conventional differentiation, C2C12 myo-
tubes lacked spontaneous contractibility because of negli-
gible sarcomere architecture. Fujita et al. used electrical
pulses to study the effects of Ca2 + oscillation on the as-
sembly of functionally active sarcomeres.247 They observed
an increase in striated myotubes that peaked at 2 h and then
decreased during stimulation with a 24-ms electrical pulse
of 40 V/mm at 1 Hz. When they applied a lower-frequency
signal (0.1 Hz), the striation was delayed and peaked at 12 h
of stimulation. When they applied a high-frequency signal
(10 Hz) for 2 h, they did not induce sarcomere assembly and
did not observe contractile activity. This electrically induced
contractile activity appeared to be mediated through the
protease activity of calpain and also involved ECM-integrin
engagement. Another study248 (Fig. 12) by the same group
showed that electrical stimulation induced a switch from fast
MyHC chain (type II) to slow MyHC chain (type I); con-
sequently, the muscle fiber phenotype changed under stim-
ulation.249

FIG. 12. Effects of electrical stimulation on muscular
protein and sarcomere development. C2C12 myotubes were
stimulated 24 h with electrical pulses (40 V, 1 Hz, 2 ms
duration). The cell lysates were analyzed by western blot
(left) and cells were fixed (right) and stained with DAPI for
nucleus (blue), anti-sarcomeric a-actinin antibody for sar-
comeric a-actinin (red), and phalloidin for MHC (green).
Reprinted with permission from Nedachi et al.248 Copyright
ª 2008, The American Physiological Society. Color images
available online at www.liebertpub.com/teb
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Some studies have also focused on the effects of combi-
nations of stimulation types applied to cells. For example,
Liao et al. combined mechanical and electrical stimulation
by culturing C2C12 cells on PU mats with different diam-
eters and fiber orientations under stretching and 10-ms
electrical pulses of 20 V.250 They showed a net improve-
ment of myotube striation and contractile protein (myosin,
MyHC, and a-actinin) secretion under electromechanical
stimulation but did not observe a significant benefit of bis-
timulation over monostimulation (mechanical or electrical
only). Magnetic induction has also been used to induce
myoblast differentiation. For example, Yuge and Kataoka
introduced magnetic microparticles (0.05–0.1 mm Ø) into
the cytoplasm of rat myoblast L6 cells by electroporation
and then cultured the cells in magnetic fields of 0.01, 0.03,
or 0.05 T.251 They observed that cells aligned and elongated
along the N-S direction of the magnetic lines and that the
formation of myotubes accelerated with the intensity of the
magnetic field. Complete differentiation was obtained with
striated myotube formation, and the myotube size also in-
creased. Another study showed that a magnetic field of
80 mT orthogonal to the cell plane promoted myogenic
differentiation and myotube hypertrophy without requiring
other treatments, such as the introduction of magnetic par-
ticles into cells.110 Interestingly, when cells were treated
with 5 mg/mL of TNFa, which is an inhibitor of myoblast
differentiation,252 the exposure of cells to the magnetic field
restored the myogenic differentiation. Clearly, electrical
stimulation with or without other types of stimulation has
important effects on myoblast differentiation and allows
faster myotube formation, higher myotube density, in-
creased myotube size, and a higher degree of myotube
maturation.

Mechanical induction of myoblast differentiation

It is known that in body-building, muscular work through
resistance training results in muscles with increased diam-
eter. Therefore, it is interesting to analyze the effects of
mechanical stimulation on myogenesis. Cells can be me-
chanically stimulated by topography, the stiffness of the
material, and stretching. We previously described (‘‘Cell
alignment by topography’’ section) the degree to which
topography can influence cellular alignment. Because
myoblasts fuse mainly in an end-to-end configuration, cel-
lular alignment seems to be required to obtain myotubes.
Curiously, when Charest et al. analyzed the differentiation
of C2C12 cells cultured on topographic patterns consisting
of embossed ridges and grooves or arrays of holes with sizes
ranging from 5 to 75 mm on polycarbonate coated with SAM
and fibronectin, they concluded that the topography strongly
influenced myoblast alignment but had no effect on the
differentiation of the myoblasts.253 Their analysis, however,
was mainly based on the measurement of sarcomeric myosin
expression, and no images of myotubes were presented. In
contrast, Bajaj et al. showed that the geometrical cues of a
substrate significantly affect myoblast differentiation.84

They cultured C2C12 cells on dishes with different geo-
metrical fibronectin coatings for 1 week and observed that
myotubes with a hybrid line-torus shape had a two- and
threefold increase in their fusion index when compared with
myotubes on line and torus patterns, respectively (Fig. 13).

Similarly, when Aviss et al. prepared a scaffold of aligned
poly(lactic-co-glycolic) acid (PLGA) fibers by electrospin-
ning and cultured C2C12 cells for 14 days, they initially
observed cell alignment with the fiber axis after 30 min of
culture, followed by cell differentiation into long multinu-
cleated myotubes aligned along the fibers.29 Our group also
showed that topographical features can favor myoblast dif-
ferentiation into myotubes.254

The stiffness of the material is also an important param-
eter in biomaterial and tissue engineering. Indeed, many
studies have shown that on a material with different degrees
of stiffness, cells migrate toward locations with the pre-
ferred stiffness.255 Engler et al. studied the effect of material
stiffness on myoblast differentiation by culturing C2C12
cells on collagen-micropatterned polyacrylamide (PA) gels
with different degrees of stiffness for 2 and 4 weeks.256

Although all cultures formed myotubes, myotubes only fully
differentiated and reached myosin striation on gels of in-
termediate stiffness (8–11 kPa) (Fig. 14). The plot of ma-
terial stiffness versus myotube striation fitted a Gaussian
curve with an optimal modulus of 12 kPa that maximized
myosin striation, whereas myotubes on gels with low
( < 5 kPa) or high stiffness ( > 17 kPa) had only poor or no
striation. This optimal modulus value closely matched the
elasticity of C2C12 myotubes, which is 12–15 kPa,257 and
the native skeletal muscle tissue stiffness value, which is
12 – 4 kPa,258 as measured by atomic force microscopy on
extensor digitorum longus muscles harvested from C57
mice.

Other studies also showed that the degree of myoblast
differentiation depends on material stiffness. For example,
Ren et al. generated biopolymeric films of poly(L-lysine)/
hyaluronan with a controlled stiffness ranging from 3 kPa
(native film) to 100 kPa (low-cross-linked films) and
400 kPa (high-cross-linked films).118 After culturing
C2C12 cells on these films for 1 week in differentiation
medium, they observed that myotubes were short and thick
on soft films, whereas they were elongated and thin on stiff
films and on a polystyrene dish, which was used as a
control. Myotube striation increased with the stiffness of
the film, from 14% (with a *350-kPa film) to 43% (with a
*400-kPa film) and 69% (with the polystyrene plastic
dish; 1 MPa). By using surfaces with different concentra-
tions of silk and tropoelastin, Hu et al. studied the impact
of surface roughness and stiffness on the differentiation of
myogenic and osteogenic lineages.259 They showed that
C2C12 cells preferred low surface roughness with high
stiffness. Regarding myoblast differentiation under
stretching, the recent literature is controversial. Globally,
the consensus is that stretching stimulation increases
myoblast proliferation but decreases myoblast differentia-
tion.260–264 In SCs, it also seems that stretching induces
NO production and hepatocyte growth factor secretion,
both of which are involved in SC activation.265–267 How-
ever, the literature diverges concerning MRF expression by
myoblasts under stretching. Kook et al. found that me-
chanical stretching stimulated C2C12 cell proliferation but
inhibited differentiation into myotubes through the con-
tinuous phosphorylation of p38 MAP kinase, which de-
creases the level of MyoD expression.263 Akimoto et al.
cultured C2C12 cells on a silicon membrane (BioFlex) that
was stretched with a 20% elongation for 24 h at a

MUSCLE REVIEW 417



frequency of 10 cycles/min (2-s on time, 4-s off time) and
observed a decrease in the expression of MyoD and myo-
cyte nuclear factor-a when compared with the nonstretched
culture.268 Similarly, Kuang et al. observed a reduction of
myogenin expression in C2C12 cells cultured under
stretching stimulation.261 In contrast, another study by Abe
et al. used a similar system (Flexercell) to culture C2C12
cells stretched to 15% elongation with cycles of 1-s on
stretch and 1-s off stretch and observed an increase of
MyoD and other myogenic factors after stretching for 12
and 24 h.269 Similarly, Gomes et al. reported increased
MyoD expression 24 h after a passive stretching session on
in vivo rat muscles.270 Another study using adipose-
derived stem cells demonstrated an upregulation of MyoD
when the cells were stimulated by stretching.271 Similarly,
by using myoblasts loaded in an anchored mixture of
collagen-Matrigel and submitted to frequent strain, Powell
et al. demonstrated a 12% and 40% increase in myotube
diameter and density, respectively.272 Although several
studies have established the role of mechanotransduction in
myogenesis activation, notably through the p38 MAPK
pathway,273,274 the effects of stretching on myoblast dif-
ferentiation are not yet well understood. A standardized
stretching process may be beneficial to better compare
results from different research groups.

FIG. 13. Topographical effects on C2C12
differentiation and myotube formation at
different days in differentiation culture
medium. Cells were cultured on unpatterned
(control) and patterned substrates with
different shapes (scale bar = 100mm) and
stained with DAPI for nucleus (blue) and
anti-MHC (green). Reprinted with permis-
sion from Bajaj et al.84 Copyright ª 2011,
Royal Society of Chemistry. Color images
available online at www.liebertpub.com/teb

FIG. 14. Stiffness effects on myotube striation at 4 weeks in
differentiation culture medium. C2C12 were cultured on col-
lagen-patterned substrates with different stiffness (scale bar =
20mm) and stained with DAPI for nucleus (blue) and anti-
MHC (green). Myosin striation occurred only when cells were
cultured on intermediated stiffness substrate. Reprinted with
permission from Engler et al.256 Copyright ª 2004, Rock-
efeller University Press. Color images available online at
www.liebertpub.com/teb
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Coculture with Skeletal Muscle Cells

Skeletal muscle with in vivo functionality requires the
cooperation of major types of tissues, including muscle
tissue, nervous tissue, vascular tissue, and connective tissue.
Thus, a skeletal muscle is infused by capillaries and con-
nected to nerve branches, whereas several connective tissues
cover the whole muscle (epimysium), the different muscle
bundles (perimysium), and the muscle fibers (endomysium).
The muscle is also linked to the bone by a tendon, which is a
highly ordered connective tissue275,276 (see Fig. 2). These
connective tissues are formed from collagen fibers with di-
ameters of 600 to 1800 nm. They are connected to each
other when interfacing and have several functions, including
giving the muscle its final shape, resisting passive stretch,
protecting different tissues from damage, distributing the
force generated by muscle fibers, and serving as an ECM for
muscle fibers. In skeletal muscle tissue, collagen and other
ECM proteins are mainly secreted by interstitial fibro-
blasts.277,278 Therefore, interactions between muscle and
fibroblasts are very important.279 It has been shown that
C2C12 myoblasts cocultured on a fibroblast layer formed
mature and highly contractile myotubes, with a higher dif-
ferentiation rate than myoblasts cultured on a collagen-
coated substrate.280 Mathew et al. also showed that fibro-
blastic connective tissues regulate the development and
maturation of muscle fibers.281 Ricotti et al. observed higher
myoblast differentiation when murine myoblasts cultured on
dermal human fibroblasts seeded on micropatterned PA gel
were stimulated through piezoelectrical effects by ultra-
sound, after cell internalization of boron nitride nanotubes
supplemented in the culture medium.282 In another study,
engineered vascularized muscle tissue with fibroblast par-
ticipation was achieved in vitro on a highly porous biode-
gradable copolymer (PLGA-PLLA) sponge scaffold in a
triple-culture condition, and it was shown that fibroblasts
strongly promoted the formation and stabilization of endo-

thelial vessels in the construct because of increased ex-
pression of vascular endothelial growth factor.283 When
these muscle tissue constructs were implanted in mice, tis-
sue prevascularization was shown to improve the vascular-
ization, blood perfusion, and survival of the implanted
muscle tissue. These results are encouraging because the
construction of thick tissues has been limited by the lack of
vascularization. Other studies have also attempted to build
vascularized muscle tissue. For example, Sasagawa et al.
described a method based on cell sheet tissue engineering to
fabricate vascularized tissue.92 By using thermoresponsive
polymer-coated dishes, they generated several layers of
endothelial and muscle cells, which they harvested and then
stacked together to form a sandwich-like construct of al-
ternated HUVECs and myoblast sheets (Fig. 15). When the
constructs were cultured in vitro, capillary-like structures
formed in the five layers of the construct. When the con-
structs were implanted subcutaneously in nude mice, anas-
tomosis with the host vascularization system and survival of
the construct were observed.

Another study by Koffler et al. also used a triple-culture
system of myoblasts, endothelial cells, and fibroblasts on a
cellular bioscaffold composed of ECM proteins derived
from pigs.284 These cell-loaded scaffolds were cultured
in vitro for different durations (i.e., 1 day, 1, 2, and 3 weeks)
before being transplanted into the abdominal wall of nude
mice and were retrieved and analyzed 2 weeks after trans-
plantation. One day of in vitro culture was sufficient to al-
low transplantation. Tissue (myofibers and vascular
network) formation, organization, and integration with the
host were poor at 2 weeks post-transplantation, whereas
scaffolds cultured in vitro with preorganized tissues at 3
weeks demonstrated high tissue organization with dense-
aligned muscle fibers and blood vessels, as well as anasto-
mosis and full integration with the host environment.
However, the construction of thick and highly vascularized
tissues is still a challenge. It has been shown that muscle

FIG. 15. Prevascularization of
five-layer myoblast sheet constructs
in vitro. (A) Schematic showing the
construct made of human umbilical
vein endothelial cells (HUVECs)
sandwiched between myoblast cell
layers. (B) HUVECs in the con-
struct were stained with anti-human
CD31 antibody (green, upper pho-
to) or UEA-I (red, lower photo)
whereas nuclei were stained with
Hoechst 33342 (blue). HUVECs
networked through the cell layers
and formed capillary-like structures
(white arrowheads) at day 4 of co-
culture. Asterisk shows the posi-
tion of the fibrin gel used as
substrate. Reprinted with per-
mission from Sasagawa et al.92

Copyright ª 2010, Elsevier. Color
images available online at
www.liebertpub.com/teb
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cells and endothelial cells affect each other through an-
giotensin II (ANG II). Indeed, in in vitro angiogenesis
assays with HUVECs treated by ANG II, increases of 71%
and 124% in tube length and branch point number were
observed, respectively. Moreover, when HUVECs were
cultured in conditioned media from differentiated muscle
cells, the tube length and branch point number increased by
84% and 203%, respectively, when compared with con-
trols.285 Other experiments showed that in growth medium,
SCs and C2C12 cells expressed vein endothelial growth
factor and its receptors to promote angiogenesis.286

Therefore, it can be concluded from these experiments that
bi- and triculture systems are essential for future studies in
this field.

Muscle tissue functionality is defined by muscle con-
tractility, which is induced by neurons. Denervated muscles
have shown a rapid loss of mass and contractility. Although
it is possible to culture myoblasts and differentiate them to
myotubes in the absence of innervation, it is not clear
whether it is possible to develop muscle tissue in an entirely
aneural culture environment. Because electrical stimulation
is easy to set up in a laboratory and allows easy control of
the stimulation parameters, many studies have used elec-
trical stimulation of muscle rather than neural stimulation to
induce muscle contraction. However, the hazardous side
effects observed with electrical stimulation suggest that this
method of inducing muscle contractility is not applicable for
long-term tissue culture. Therefore, neural stimulation of
muscle tissue may be more appropriate. Thus, coculture of
nerve and muscle cells in vitro is widely used to study
neuromuscular junction (NMJ) formation, function, and
maintenance in nerve-muscle disorders. Modeling of sig-
nals exchanged at the NMJ may be clinically appropriate for
spinal cord injury as well as muscle- and motoneuron-
related diseases, such as amyotrophic lateral sclerosis,287

spinal muscular atrophy,288 and muscular dystrophy.289 For
these reasons, nerve-muscle synaptogenesis is an active re-
search area in tissue engineering and needs to be understood
well because neurons transfer the action potential to muscle
cells via the NMJ.

The NMJ is a synaptic structure between an axon terminal
of a motor neuron and the motor endplate on a muscle fiber
(Fig. 16).290 In vertebrates, it ensures the fast transmission
of an action potential from the neuron to the muscle fiber
through the release of the neurotransmitter acetylcholine
(ACh) into the synaptic cleft. The binding of ACh to its
receptor AChR on the muscle fiber ultimately cause muscle
contraction. AChRs are evenly distributed along muscle fi-
bers at a density of *1000/mm2. When motor neurons are
added to muscle cultures, their axon terminals randomly
contact myotubes, which induces the aggregation of
AChRs291 at a density of > 10,000/mm2 at the NMJ292 and
the formation of shallow beds on the muscle fibers.293 The
synaptic cleft is a space of *50 nm that separates the nerve
from the muscle fiber sarcolemma. Basal lamina materials,
including collagen IV, fibronectin, laminin, entactin, perle-
can,294,295 and proteins, such as agrin, acetylcholinesterase,
and neuregulin, invade the synaptic cleft. Then, postsynaptic
invaginations called secondary synaptic folds, at the crests
of which are localized AChRs,296 form on the muscle fibers
in front of the axon terminal.297 The molecular mechanism
underlying this process is governed by agrin, which is se-

creted by the nerve and induces AChR aggregation on the
muscle fibers.298 Agrin clusters AChRs via the activation of
the transmembrane muscle specific kinase (MuSK), which is
selectively expressed in skeletal muscles, by binding its
coreceptor, the transmembrane low-density lipoprotein re-
ceptor-related protein 4 (Lrp4).299,300 Another effector for
AChR clustering is rapsyn (for receptor-associated protein
at synapse), which anchors AChR at the synapse.301

Downstream, the signal transduction pathway that links
MuSK activation to AChR aggregation is complex, and
several pathways have been identified.290

To date, neuron-muscle cocultures have been studied
using mouse, rat, chick, and human embryonic stem cell–
derived C2C12 myotubes.302–305 It has been shown that the
functional maturation of AChRs in the NMJ and differen-
tiation of muscle cells is improved in nerve-muscle cocul-
ture systems.306 Muscle fiber maturation was also observed
in vivo by Dhawan et al., who used implanted constructs of
rat skeletal myoblasts in fibrin gels to investigate the effect
of the host neural network on the engineered muscle. Their
results indicate that neurotization of engineered skeletal
muscle significantly increases force generation and NMJ
development.307 In a recent study, Guo et al. established
NMJ formation between human motoneurons and rat skel-
etal muscle in a serum-free culture system. Such studies
bridge the findings from animal studies and applications in
humans, and this human-cell-based tissue may be useful for
drug screening and preclinical studies.308

The different coculture studies presented here with
myoblasts, endothelial cells, fibroblasts, and neuronal cells
demonstrate the importance of cell–cell interaction and
communication. Such cell–cell contacts play a key role in
cell maturation and differentiation, which will result in a
higher-quality engineered organ through tissue engineering.
Therefore, coculture is essential to engineer mature and
functional muscle tissues.

FIG. 16. SEM image of a rodent neuromuscular junction.
Components are as follows: nerve terminal (N), muscle fiber
(M), Schawnn cell (SC#), round synaptic vesicles contain-
ing ACh docked in the active zone of the nerve terminal (*),
and synaptic cleft with basal lamina (SBL). Reprinted with
permission from Wu et al.290 Copyright ª 2010, The
Company of Biologists Ltd.
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Applications of Engineered Muscle Tissues

Regenerative medicine and stem cells

One of the main goals of muscle engineering is to develop
muscle tissue for medical applications. Thus, the replace-
ment of damaged, wounded, or nonfunctional muscle tissue
is an important goal of most research in this field and has
been extensively reviewed.1,309 Traditionally, regenerative
strategies are based on ex-vivo-engineered constructs with
autologous cells that can be reimplanted into the patient.310

SCs are stem cells that directly involve in muscle regener-
ation.311 They are located between the sarcolema of the
muscle fibers and the basal lamina under a quiescent status
(G0 phase) and are characterized by the expression of the
transcription factors Pax7 and Myf5 but not MyoD or
Myogenin.312 When the muscle fibers are damaged, SCs are
activated and start to proliferate and to express MyoD. A
symmetric/asymmetric mechanism of cell division induces
the generation of SCs expressing Pax7 + /Myf5 - (basal cell
in contact with the muscle fiber) that will contribute to the
maintenance of the pool of SCs, and other SCs expressing
Pax7 + /Myf5 + (apical cell in contact with the other cell) that
will differentiate and will fuse together into myotubes to
regenerate the muscle fibers.313,314 Freshly harvested SCs
have been used in injured or disease mice model that shows
efficient myofiber regeneration.315 However, SCs cultured
in vitro and then transplanted have shown decrease in cell
proliferation and in their myogenic potential.316 In addition
to their potential of generating different tissues, a large di-
versity and heterogeneity exist among stem cells; therefore,
other cell types may also be used for muscle regeneration.317

Bone marrow stem cells, which contain hematopoietic stem
cells and mesenchymal stem cells, have been shown to re-
store the SC pool and to generate myofibers in injured
mice.318,319 However, bone marrow transplantation has not
been reported efficient in therapy for muscle and further
studies are required to define the subpopulation of bone
marrow cells with myogenic potential in an animal model of
muscle disease.312,320 Muscle side population cells (SPs) are
localized in the interstitium between the muscle fibers, near
the blood vessels, and are characterized by the expression of
Sca-1 + , ABCG2 + , CD45 - , CD43 - , c-kit - , and Pax7 - . SPs
are able to differentiate into SCs and to form myotubes in
monoculture or in coculture with myogenic cells.321–323 A
subgroup of SPs characterized by Sca-1 + , ABCG2 + ,
CD45 - , Pax7 + , and Syndecan-4 + has been shown to re-
generate skeletal muscle efficiently in an injured mouse
model.324 Moreover, SPs injected intravenously were able to
migrate toward the injured muscle for restoring it.325 An-
other group of cells from the interstitium are characterized
by PW1 + /Pax7 - and are myogenic in vitro.326 When in-
jected in vivo into injured muscle, these cells both prolif-
erated to increase their own pool and differentiated into SCs
(Pax7 + ).327 Muscle-derived stem cells (MDSCs) are char-
acterized by Sca-1 + , CD45 - , CD34 - , Flk1 + , Desmin + ,
and M-cadherin - and are multipotent.328 Used in a model of
dystrophic mice (mdx mice), MDSCs injected in the blood
stream were able to migrate into the host muscle tissues and
to regenerate myofibers and dystrophin expression.329 Pla-
telet-rich plasma has been used in culture medium to im-
prove in vitro the expansion of MDCs while maintaining
their stemness.330 Mesoangioblast cells are characterized by

CD34 + , c-kit - , Flk1 + , NKX2.5 - , Myf5 - , and Oct4 - and
are multipotent.312 They proliferate well in vitro maintain-
ing their multipotency and have shown a particular effi-
ciency in the treatment of different animal models of
muscular dystrophy.331,332 Pericytes are derived from blood
vessel and are characterized in human by CD45 - , CD34 - ,
CD56 - , CD144 - , CD146 + , PDGFR-b1 + , and NG2 pro-
teoglycans + .333 Transplanted in dystrophic animal through
blood stream, pericytes repopulated the SC niche and re-
generated myofiber.333 AC133 cells or CD133 + cells are a
subpopulation of hematopoietic cells with myogenic activity
when cocultured with myogenic cells or with cells expres-
sing Wnt.334 When injected into a muscle of dystrophic
mice, cocultured AC133 cells replenished the SC niche and
contributed in myofiber regeneration.335 An autologous
transplantation of AC133 cells in a dystrophic boy demon-
strated the safety of the therapeutic strategy used but did not
offer substantial functional benefit.336 Embryonic stem cells
(ESCs) are pluripotent and have great potential in therapy
applications. However, immunogenic response, teratoma
formation, and ethical concerns are the major hindrances of
their use. The derivation of human ESCs into multipotent
mesenchymal precursors followed by their differentiation
into myoblasts allowed stable engraftment after transplan-
tation into muscle-injured mice without teratoma forma-
tion.337 The use of ESC-derived embryoid bodies induced to
myogenic differentiation has also been used and trans-
planted myoblasts in muscle-injured mice showed stable
engraftment, myofiber regeneration, replenishment of the
SC pool, and absence of teratoma.338 Induced pluripotent
stem cells (iPS cells) are reprogrammed somatic cells into
ESC-like state.339 The pluripotency is reprogrammed by
nuclear transfer of four transcription factors (Oct3/4, Sox2, c-
Myc, and Klf4).340 iPS cells can be generated from many cell
types and different methods have been developed to avoid the
use of viral vectors for the delivery of the four transcription
factors.341,342 Moreover, iPS cells can be generated from
genetic-disease tissues and can be used for specific disease
study and drug screening.343 Myogenic progenitors can be
derived from iPS cells and when transplanted in dystrophic
mice have been shown to efficiently engraft, to replenish the
SC pool, to regenerate dystrophin-positive myofibers, and to
improve contractibility.344 Human iPS cells have also been
generated from disease patient, genetically corrected, and
transplanted in dystrophic mice showing specific functional
tissue and gene restorations.345 In summary, stem cell therapy
is a developing field and encouraging results have already
been obtained in muscular regeneration. Some stem cells,
such as mesangioblasts or AC133, are already in clinical-trial
phase. Depending on the stem cell type, the main problems
encountered are the difficulties of stem cell expansion in vitro
and the loss of stemness, the difficulties of systemic delivery
via blood stream due to the inability to cross the endothelial
wall, the migration of the stem cells to the damaged muscle,
and the survival of stem cells after injection. However, the
techniques of cell derivation and of genetic modification open
the field of stem cell therapy and make it full of potentiali-
ties.346 Recently, a new therapeutic strategy appeared with a
recent shift toward an in-vivo-regenerative strategy, also
called in situ tissue regeneration or endogenous regeneration,
based on the recruitment and stimulation of progenitor cells
in situ.347–350
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Drug screening

Engineered skeletal muscle tissue is useful not only for
reconstructive surgery but also for applications in drug
screening. Indeed, engineered muscle tissue offers a physi-
ological environment that should provide valuable infor-
mation in multiple signaling pathways about drug efficiency,
pharmacology, and toxicity.3 Such skeletal tissues used as a
substrate can be either healthy or a model of human diseases
and must be built in a reproducible way to allow standard-
ization and comparison of results. As skeletal muscular tis-
sues are notably involved in glucose homeostasis, any
impairment of glucose signal transduction will decrease the
glucose uptake by muscles under insulin stimulation and may
contribute to type 2 diabetes development.351 Understanding
this insulin activation pathway is therefore important. It has
been shown that the glucose transporter GLUT4 is translo-
cated from intracellular storage compartments to the plasma
membrane under insulin stimulation.352,353 During this
translocation, accelerated GLUT4-containing vesicle exocy-
tosis was observed, as well as the involvement of the PI3K
and Akt pathways.354,355 Thus, several investigators reported
glucose uptake by differentiated C2C12 cells.356–358 How-
ever, to provide a model with higher insulin sensitivity,
Hayata et al. established a new cell line named C2C12-IS and
screened a chemical library in a high-throughput screening
(HTS) study to search for compounds that promote glucose
uptake.359 Although HTS is a powerful method that uses 2D-
cell-based assays to screen a large amount of potential drugs,
the use of cell cultures as a substrate does not necessarily
match the in vivo complexity, which results in a great number
of hits that fail in clinical trials.360,361 Indeed, many studies
have now shown that cellular behavior in the 2D and 3D
environment is different.67,362 In addition, the use of animal
models for testing drug efficacy creates ethical problems, and
the results derived from such models are difficult to translate
to humans. Therefore, there is a great need for new substrates
that mimic the complex biological architecture363 and support
its physiological and metabolic function. To this end, some
investigators have chosen to use simple organisms, such as
zebrafish or nematode worms, for drug and genetic screen-
ing,364–366 whereas other groups have chosen to develop
engineered muscle tissue3 (Fig. 17).

An important aspect of such muscular models that mimic
the in vivo structure is to establish control of the contract-
ibility of the engineered muscular tissue. This control can be
achieved through neuronal or electrical stimulation. To this
end, Nagamine et al. used microelectrode arrays to stimulate
myotubes, and Kaji et al. showed that myotube contract-
ibility was positively correlated with the glucose up-
take.241,367 The current transition from 2D to 3D in vitro
muscular models is also of great importance for drug test-
ing.362 Finally, in the future, new directions for tissue drug
screening, such as the individual screening of patient tissue
through outpatient biopsy procedures, may also be possi-
ble.368,369 Moreover, iPS cells370 and ESCs371,372 represent
potential sources of cells from which to engineer tissues for
drug-screening applications.

Other applications

In addition to the aforementioned medical applications,
engineered muscle tissue also has great potential in many
other applications. Indeed, muscle is the best natural mo-
tility motor; therefore, an actuator made of living muscle
would have several advantages regarding efficiency when
compared with a synthetic actuator.373 Muscle tissue is also
built by a hexagonal lattice of tightly packed filaments
composed of actin and myosin chains, which has the best-
known packing order and the lowest volume when com-
pared with synthetic counterparts. These units of actin
chains sliding on myosin chains are among the smallest,
most well-organized motors and could be modified to gen-
erate miniaturized moving parts for micromechanical
devices with several applications in biological microelec-
tromechanical systems.374 The mechanical force developed
during muscle contraction can also be converted into other
forms of energy, such as electricity.375 Currently, re-
searchers have attempted to harvest electricity from muscle
contraction mostly for use as an energy source for implanted
medical devices and other applications.376,377 Recently,
Wang et al. were issued a patent in which the energy from the
contractions of muscle cells cultured on an array of piezo-
electric nanowires could be turned into electricity.378 Ishisaka
et al. used pulsating heart cells as a micromechanical actuator
to produce electricity by culturing heart muscle cells on a

FIG. 17. Engineering of miniature bioarti-
ficial muscles (mBAMs) on PDMS micro-
posts in a 96-well plate for drug screening.
PDMS microposts are 7-mm high, 7 mm Ø,
and 4-mm apart. The mBAM shown in the
well is 5 days postcasting whereas at day 7 the
mBAM showed aligned myofibers after
staining for sarcomeric tropomyosin. Rep-
rinted with permission from Vandenburgh.3

Copyright ª 2010, Mary Ann Liebert, Inc.
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PDMS membrane, which transfers the vibration energy to
piezoelectric fibers.379 These efforts show the use of muscles
as electrical generators. In the context of the world energy
crisis, there is a strong demand for new energy sources.
Therefore, harvesting energy from muscle contractions may
lead to important developments and applications in the future.

The food industry is another field in which engineered
muscles could have applications. Indeed, meat is the most
important source of protein in the human food cycle. Recent
studies showed that engineered muscle tissues (cultured
meat) as a new source of protein have several advantages
over conventionally produced meat. For example, in com-
parison to conventionally produced meat, cultured meat
reduces the use of energy by *7% to 45% (only poultry has
a lower use of energy), greenhouse gas emissions by 78–
96%, land use by 99%, and water use by 82–96% (Fig. 18).
Finally, it was concluded that the overall impact on the
environment from cultured meat production was substan-
tially lower than those from conventionally produced meat.9

A tissue-engineered meat product and a method for pro-
ducing such meat were also disclosed in a patent that gives a
commercial prospective for such meat sources.380 Recently,
Mark Post made the prototype burger of cultured meat from
stem cells.381,382

In addition, a patent has also been issued on artificially
produced 3D muscle tissue, which shows the value of en-
gineered muscle tissue for applications that may interest
investors.383 All these examples, and others, clearly show
the progress in SMTE toward clinically feasible, func-
tional, engineered muscles, which could improve the life of
patients.

Concluding Remarks

This article reviewed different methods and techniques
for engineering muscle tissues. Although we provided some
basics on the structure and organization of muscle for a

better understanding of muscle function, we notably focused
on cell alignment and cell differentiation through topo-
graphical constraints, mechanical stimuli, or electrical and
magnetic fields. We also covered the effects of coculture
systems for improving muscle tissue quality and highlighted
some major applications of these engineered muscle tissues,
such as drug screening or regenerative medicine. The re-
search and development of engineered skeletal muscle tis-
sues is in the beginning stages. Although numerous goals
and applications have been defined, similar to the develop-
ment of other tissue types, muscle tissue development is still
limited by the lack of a vascularized network that is pre-
requisite for a large-scale tissue fabrication. Therefore, there
is a great demand to develop new methods and techniques
for the creation of prevascularized tissues. The alignment and
differentiation of myoblasts in serum-free conditions is an-
other challenge that needs to be considered, especially in
clinical studies. Moreover, although some engineered skeletal
muscles have applications in practical drug screening and
miniaturized bioactuators, more research is necessary to in-
troduce a practical muscle tissue for regenerative medicine.
Until now, the properties of engineered muscles are far from
those of native muscle tissue; notably, the thickness and
strength of engineered tissues must be improved to achieve
natural volumetric efficiency. This improvement in tissue
efficiency will necessarily match with other possible devel-
opments in food resource and energy-harvesting systems.
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