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Synthesis & Characterizations

&t

CSIR - IICT
A) - (B) (C) 15 (9o
x 1 \\]\‘50 Q%S
07 o ,{»;’j,co p a - 12 \S)
+ ‘ ®) N Polymer
>
. . UO) = 5 O
6- 2
tyrene -~ = £ o C;%ﬁj
- {
El[, T K P . ’ . 0 _ ' ' L Aggregate )
I~ 10 z : } 5 1 10 100 1000 10000
Size (nm)
CTAB ppm
V-50,80°C,6h (D) go-
2ol0 ¢
Oor E ¢o- $ g70°c
= iy ||
N = o0 % on) :
§ 40- |<£ $ |<£ 30 min
8 (@) @)
NVP E21E i =
3 = Without CTAB = Coated plate
0= . e o Y
[N D | |
A S AN LN g
(F) 100, B (€ (H) ao-
o —
80- L s0- m'e £
3 A = 2% =
§ 60— g’ 60+ oo ‘._._. = g ..i_), GC.)
- S A A v £ E =
R 40+ S 40 9 o o 9
= 2 20 2
20 S 204
(§] ;Stable film
01— T T T 1 0 T T T T 0 T T | p—
Q g N ) \2) Q B N, ) \7) Q o) N, ) )
L I A S P P



Development of Tumoroids &g
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Tumoroid Production

400 0 9 f @
' N=21 : 8L261 a
( ‘ 87 °
30 ® MDAMB46g =
£ © HEK293 g
3 FaDuy c
%’l 240 D
-
]
¢ S
1A 200
0 0 =25 o
7 8 2 2
A =00 ©
1so ‘é, 8
100 g

2D culture
(1023)

3D culture_matrigel
(1758)

3D culture_polymer
(2109)

Intensity

CD133 Counts

DAPI

Larger clusters formed within 12 h post smaller
clusters seeding with cells

35



Key Features =c

ofterr welt
Touching Liver

(B); 989 (C) 2500 x 2D culture ¢ 1st construction
| @ 20004 ¢ SDculture e 1stinvasion
5 1459 £ ’ 3 .
>1 X c \ e 2nd recontruction
=213 3 1500 i 3 i
w |9 3 )| A ¢ 2nd Invasion
T \
3 ) 3 D culture  1000- 1 ,'I K ¢ 3rd reconstruction
[= - 1
= 8 ¥ A ‘* e 3rd invasion
500 3 >
. Coated plate
0 I S S Uncoated plate
CD133 Counts 4 5 6 7 8

Time (day)

uoiseAu|

(F)

UuoI}oNIISUOIDY




P
Drug Treatment =<

FAATT AR - S AT
CSIR - 1ICT
it well
Touehing Jipes

(A)120 -~ 2D monolayer (B)500- ( )1500_
— -~ 3D spheroid —_
= £ 400
— 90— =
> = 2
% 8 300 S 1000
£ 604 7] 0o
i ) O
s 2 200+ 2
E _ B =y 500
3 % Z 100- 3
0 T | 1 1 0 | 1 1 | 1 1 o s
0.1 1 10 100 1000 3 4 5 6 7 8 0—7"—"1
Concentration (uM) Time (day) e.&' e-& a&
g & 5 €
(D) & ¢
& ,,:g-‘ Q@-‘
& T .7
5 NS
o'b“ IV EAR i
I Monolayered cells
I Clustered cells
Day 3 Day 4 Day 6 B Dead cells
Before treatment After treatment After treatment
(E) U87 _MDAMB468 (F) ez ap e
MDR1/ ABCB1 ™= @ s @& 130 kDa 3D-10000CO000000C00a
] MDAMB468 2D —
B-actin e wuw-wher & 45 kDa 3D -}000OOOOOCONK—
FaDu _ GL261 _ FaDu 2D H
MDR1/ABCB1 T ™ * ¥ 130kDa 307 = .l
_ GL261 2D —— |* x
B-actin "= == w= =@ 45 kDa 3D-rooooooooooooooooooo—|§
2D 3D 2D 3D 0.0 0.5 1.0 1.5 2.0

Relative Protein Expression 7



Transcriptomic Analysis
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Inventiveness

This is a cost-effective greener strategy for preparing stable polymeric coating that promotes the
speedy and effective production of cancer spheroids on cell culture plates.

This coating material is reusable and recyclable. It can be used repeatedly to grow tumoroids without
losing its effectiveness.

Ease of production makes it suitable for large-scale production.

The tumoroids can be reversibly engineered (in terms of stemness) using the coating platform.

The pre-formed small clusters of cells could accelerate/boost the formation of larger tumoroids on the
coated surface.

Industrial Application Potential

This invention holds high promise on commercial 3D tumoroid-based drug screening
technology as well as for (to-be-tested) organoid tissue-model regeneration applications.

Outcomes
Sahoo, S.; Ghosh, S.; Malik A. K. A.; Chakrabarty, A.; Banerjee, R. Tumoroid Forming Co-Polymer and
Process for Preparation Thereof. IN Patent, PCT Application No. 2025/11026758.

Sahoo, S.; Ghosh, S.; Malik A. K. A.; Das, P.; Upadhyay, A.; Chakrabarty, A.; Banerjee, R. Emergence of In
Vitro Glioblastoma Survival via Adaptive Quasi-Quiescence by Emulsion Copolymer Matrix. Adv.
Healthcare Mater. 2025, e01637.



INTRODUCTION

The Pseudomonas Quinolone Signal (PQS) system iIs a
crucial component of the complex qguorum sensing (QS)
network In Pseudomonas aeruginosa, a multidrug-resistant
opportunistic pathogen responsible for severe infections,
particularly in immunocompromised individuals. The PQS
system regulates the expression of various virulence
factors, including pyochelin, pyoverdine and oxidative
stress responses, through Its iInteraction with the
transcriptional regulator PgsR (also known as MvfR). PgsR
Is activated by alkyl quinolone signal molecules such as
PQS and HHQ (2-heptyl-4-hydroxyquinoline), leading to
the transcription of genes involved In virulence and further
guinolone synthesis, forming a positive feedback loop.
Given the essential role of PgsR in mediating virulence
without affecting bacterial viability, it has emerged as a
promising target for anti-virulence therapy.

S
no

1 Small molecule
antagonists

2 Allosteric
Inhibitors
Fragment-based
leads chemistry.

Natural product
Inhibitors

Inhibitors of the PQS Receptor (PgsR) in Pseudomonas aeruginosa: A Promising Anti-Virulence

Therapeutic Approach
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The PQS System & PgsR (MVIR)

*The Pseudomonas Quinolone Signal (PQS) is
a quorum sensing (QS) system that controls
expression of virulence factors (pyocyanin,
elastase), biofilm maturation, and

Inter-kingdom interactions.
PgsR (also called MvVfR) Is a LysR-type

transcriptional regulator that binds PQS family
ligands (e.g., HHQ, PQS) and activates
downstream virulence gene expression.
Targeting PgsR  blocks transcriptional
activation of PQS-regulated genes — reduced
virulence and biofilm formation without
exerting bactericidal pressure.

Classes of PgsR Inhibitors

Structural analogs of PQS/HHQ that bind PgsR but fail to activate transcription.
Example scaffolds: quinolone derivatives, benzamide and phenyl furanone analogs.

Molecules that bind outside the ligand pocket, perturbing PgsR conformation.

Low-MW fragments discovered by NMR/X-ray fragment screening, optimized by medicinal

Plant flavonoids and microbial metabolites reported to interfere with PQS signaling.

Classes of PgsR Inhibitors

Targets virulence, not viability — potentially reduces resistance development.
«Can be used as adjuvants to conventional antibiotics, Improving efficacy against biofilm-embedded bacteria.
*May attenuate inflammation by lowering toxin production, improving clinical outcomes.

* Despite promising results, challenges remain in optimizing the pharmacokinetic and pharmacodynamic properties of PgsR inhibitors for clinical application. Issues such as

CONCLUSIONS

Mechanism of Inhibition

~
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I
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Experimental Approaches to Validate Inhibitors

~
In vitro assay
J
)
Biophysical methods
/

In vivo models

bioavailability, metabolic stability, and off-target effects must be addressed through further medicinal chemistry optimization and preclinical evaluation.

* In conclusion, the PQS system and its receptor PgsR play a central role in regulating P. aeruginosa virulence. Targeting this system with specific inhibitors offers a novel, non-

bactericidal approach to control infections by disarming the pathogen rather than killing it, thereby reducing selective pressure for resistance.

» Continued efforts In drug discovery, structural biology, and translational research are essential to advance PgsR inhibitors toward therapeutic use in managing P. aeruginosa
Infections, especially In the face of rising antibiotic resistance.
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A Bloactive Isotflavone from Derris spp. Modulates Acylhomoserine lactone Mediated

Quorum sensing in Pseudomonas aeruginosa
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INTRODUCTION

The alarming scenario of antimicrobial resistance made treatment of infections due to opportunistic pathogen Pseudomonas aeruginosa
challenging.

The cell-cell communication system- Quorum sensing (QS) and associated biofilm is an excellent target for the discovery of novel
antimicrobial modalities.

Plant flavonoids are known for its anti-QS and anti-biofilm efficacy. In this study, Derrisisotflavone-B (DIF-B), a diprenylated isoflavone,

was analyzed for its anti-QS and antibiofilm potential through in vitro, in vivo and in silico approaches and compared with known QS
inhibitory flavonoid Baicalein (BCL).

MATERIALS & METHODS

: Determination of QS ps : :
Screening of Assessment for ; ; In silico analysis to predict
; ; : ' ; related virulence factors, ¢RT-PCR analysis of ; ; . T ;g
Phytochemicals against antibacterial and anti-QS : : In vivo analysis for toxicity, drug likeliness, toxicity
s s D and biofilm on treatment Biofilm and QS related , Y .
LasR and RhIR QS activity and determination : rescuing property and pharmacoKinetic
. - with test compound at sub- genes :
receptors of P. aeruginosa of MIC and Sub-MIC MIC properties
_/ / /
RE SULTS Control
Docking Score _ .
Compound No. of Hydrogen bonds Hydrophobic interactions
(kcal/mol)
LasR
*PHE 101, *TYR 56, *THR 75, *TRP 88,
C..-HSL 9440 4 (*TRP 60, *ASP 73, *LEU 36, *TYR 64, ALA 50, *LEU 125,
12 ' *ARG 61, *ARG 61) *TYR 47, *ILE 52, *GLY 126, *CYS 79,
*LEU 110, ALA 105
*TYR 64, *LEU 36, ALA 50, *TYR 47
*THR *ARG 61 ’ ’ ’ ’
BCL -9.864 4,§ e 6715 ’*TRP(; 06 * *VAL 76, *ASP 73, *TRP 88, *TYR 56, iy
’ ) *SER 129, ALA 127
*LEU 39, *LEU 40, *GLY 38, ALA 50,
*TYR 64, *ARG 61, *LEU 36, *TRP 88,
*LEU 110, *PHE 101, *TYR 56, ALA 105
. _ % b ’ ” ’
DIF-B LR G EEEzO) *THR 75, *TYR 93, *TRP 60, *SER 129,
*ASP 73, *TYR 47, *CYS 79, *VAL 76,
*GLY 126, ALA 127
RhIR
*LEU 69, *ASP 81, *TYR 72, ALA 44,
C,-HSL -6.066 I (*TRP 68) *SER 135, *TYR 64, *ILE 84, *LEU 107, Fig 2. A) Biofilm formation on glass slides by P. aeruginosa with and without
WL L, 1818 LB Lt T phytochemical treatments- Confocal Laser Scanning Microscopic images B)
*GLY 46, *VAL 60, *SER 135, *TYR 45, Colonization of GFP- tagged P. aeruginosa inside C. elegans when treated with and
BCL -9.2777 : ALA 44, *ILE 84, *TYR 64, *ASP 81, *TRP without phytochemical- Fluorescence microscopic images.

96, *PHE 101, *TYR 72, *LEU 69, *TRP 68

*GLN 73, *VAL 60, *THR 58, ALA 79,
DIF- B 3.282 _ *PRO 56, *PHE 53, *THR 54, GLY 78, CONCLUSIONS
*ASN 76, *TYR 72

Table 1. Docking score of the natural ligands (C,,-HSL & C,~-HSL) and the flavonoids
BCL and DIF-B against LasR and RhIR QS receptors. * Represents crucial residues.

v The isoflavone DIF-B showed good binding affinity with both AHL-
regulated QS systems of P. aeruginosa.

v Sub-MIC treatment of DIF-B showed reduced virulence and biofilm
formation by P. aeruginosa.
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Acinetobacter baumannii

Is an important Gram-negative
nosocomial pathogen often associated with severe nosocomial
infections, including ventilator-associated pneumonia, urinary

- tract infections, bacteremia and septicemia, cystic fibrosis etc.,

It is a member of the ESKAPE pathogens Enterococcus
faceium, Staphylococcus aureus, Klebsiella pneumoniae, A.
baumannii, Pseudomonas aeruginosa, Enterobacter species

To address the advancement of A. baumannii resistance
juncture, naturally occurring flavonoids which are the
standalone compounds playing an essential role in

downregulating biofilm formation by interfering with the
response regulatory system (BfmR).

hat is BfmR/S system? ‘

ig

Dephosphorylation

BfmR *

Stress response

No activation

@
Autophosphorylation
l Source: Samantha et al., 2022)

BfmR eme

Flavonoids
01.  Curcumin 969516
02. Chrysin st "]""'s'!ij'_'__'jjjjf.’.f 5281607
03. Quercetin - --'i-'-?'i'?il"i?'f»'"--""?-'{.-;;;;;;.:._1__ - 5280343
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* Agar well diffusion method (Abdhulla et al., 2024)

 Minimum inhibitory Concentration (Shu-Yun Wei et al.,
2025)

« MATH assay (Anthonymuthu Selvaraj et al., 2020)

e EPS extraction and Quantification (Jothipandian et al.,
2022)

e Biofilm and Pellicle Formation Assays (Oh,M.H., et al.,
2020)

 PNAG production (Choi et al., 2009).
» Surface motility (Hyo kim et al., 2022).
e Sub-surface Twitching assay (Luo et al., 2015)

* Bioassay for the detection of Autoinducers (Hyo kim et al.,
2022)

tudies

Molecular Docking Simulations of Flavonoids With BfmR
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3D crystal structure of BfmR
chain A (6BR7)

3D Crystal structure of BfmR of Acinetobacter
baumannii —PDBID- (6BR7)
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2D Interaction patterns of flavonoids with the N-terminal domain of BfmR
(a) Curcumin (b) Chrysin (c) Quercetin
Source: (Raorane et al., 2019)

Flavonoids plays a major role in inhibiting the biofilm
formation by directly interacting with the BfmR response
regulator of Acinetobacer baumannii.

This approach helps in addressing anti-virulence strategies
against A.baumannii infections.
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Anti Quorum Sensing and Anti-infective potential of 6-prenylated flavone against Pseudomonas aeruginosa PAO1
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INTRODUCTION

* Quorum Sensing plays an important role in Pseudomonas
aeruginosa virulence and pathogenesis

* Targeting QS signaling mechanism can overcome the virulence
and antibiotic resistance mechanisms of P. aeruginosa

* Phytochemicals are known for their ability to target QS

signaling pathways and reduces the pathogenesis

* Artocarpesin (ACN), a 6-prenylated flavone inhibited
virulence factors by targeting QS mechanisms
METHODS
Determination ‘lili?:lc;nocl; Gene
of anti-QS — factors and expression
activity biofilm studies
}
In vivo studies
on In silico
Caenorhabditis analysis
elegans

RESULTS
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Fig 1. (A) Growth curve of P aeruginosa PAOI1 treated with ACN and positive
control, BCL at % MIC concentration; (B) Normalized gene expression of QS genes
(lasl/lasR , rhll/rhiR) and related virulence genes are downregulated after treatment
with ACN, which was compared with housekeeping gene, proC. (C) Percentage
reduction of virulence factor and biofilm determinants production in P. aeruginosa
when treated with ACN, which was compared with positive control BCL; (D)
Kaplan-Meier graph represents the survival of Caenorhabditis elegans worms
infected with PAO1, and treatment with ACN and BCL.

Control

Control

Fig 2. (A) CLSM images of biofilm formation after treatment with ACN which
was compared with control and BCL treated; (B) Reduction in the

colonization of P. aeruginosa in the gut of C. elegans treated with ACN and
BCL at sub-MIC concentration.

C,,-HSL

BCL

ACN

LasR RhIR

C,-HSL

BCL

ACN

Fig 3. The interaction between ACN with QS receptors, LasR and RhIR was
studied using molecular docking.

CONCLUSION

Sub-MIC concentration of ACN is non bactericidal in nature

Virulence factor production and biofilm formation was reduced
in P. aeruginosa after treatment with ACN

Downregulation of QS genes was observed after treatment with
ACN

ACN improves the survival of C. elegans infected with PAO1

ACN competitively binds with the QS receptors than the
natural ligands, evident from the molecular docking studies
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Glucocorticoid receptor-targeted liposomal delivery of wnt/g-catenin inhibitor selectively modulates
tumor-microenvironment for efficient colorectal tumor regression

AcSIR

Pritam Das?P?, Tithi Bhattacharyya?b, Aasia Ansari2?, Anjaneyulu Eanti?, Yogesh Chandra¢: Rajkumar Banerjee2b*

aDepartment of Oils, Lipids Science and Technology, CSIR-Indian Institute of Chemical Technology,

Hyderabad, 500007, India

bAcademy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
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GR mediated selective targeting of wnt/p-catenin pathway in

colorectal cancer

» Wnt/B-catenin signaling pathway is a highly conserved developmental pathway which is
extremely challenging to selectively target.

» GR Is a nuclear hormone receptor; present ubiquitously in all the cells and thus its cancer
cell-selective targeting is also difficult.

» However, we showed that cancer cell-associated GR can be selectively targeted owing to
their aberrant transactivation behavior in cancer cells.

» Based on this unique feature, here we intend to co-formulate a GR-targeted cationic
liposomal formulation for simultaneous targeting of both the GR and wnt/B-catenin
pathway.

Characterization studies of D1XFH liposomal formulation
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% The highly sensitive wnt/p-catenin developmental pathway for the first time is selectively targeted for TME

s The simultaneous targeting of GR and wnt/B-catenin led to significant tumor growth inhibition with

reversal of EMT and pro-tumorigenic immune response.

different pathways.

% The toxicological analysis of this formulation indicates its biocompatible nature towards animal model.

% The data clearly shows that GR is safe for repurposing various other drugs/ inhibitor molecules targeted to

Emalil ID: banerjee@iict.res.in
The rationale behind D1XFH formulation preparation
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Key findings

O Here, we find that the D1XFH liposomal formulation is able to selectively kill colorectal cancer cells by
generating excess ROS, which in turn induces apoptosis.

O Further, our in-vivo data shows that D1XFH treatment leads to significant tumor growth inhibition and
Increased survivability signifying its efficacy and biocompatibility in mice model. This is also corroborated
with the protein expression analysis denoting reduction in cellular proliferation, enhancement of EMT-reversal
and an inhibition of various downstream proteins of wnt/p-catenin pathway.

O Thus, our GR-targeted D1XFH liposomal formulation can be used for selective targeting of this particular
developmental pathway in cancer cells, indicating a potential new drug-sensitization strategy against colorectal
cancer.

In vivo efficacy evaluation of D1XFH formulation
Survivability study
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Materials and Methods

Liposomal formulations of FH535 were prepared by thin film hydration method

The final liposome was produced after 5 cycles of freeze thaw followed by extrusion (0.2 pum)

3

Liposomes were characterized by DLS analysis and TEM imaging

4

Several in vitro and in vivo studies were performed

In vitro studle/ \In vivo studies

Cellular cytotoxicity Survivability
Cellular and nuclear uptake Biodistribution
GR-transactivation Tumor regression
ROS generation Sub-chronic toxicity
Apoptosis or cell death Protein expression

Increased Th1l/Th2 ratio indicating effective anti-tumor Immune response
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D1XFH treatment inhibits wnt/g-catenin pathway, induces EMT-reversal and
reduces tumor cell proliferation
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Histopathological analysis of vital organs reveals no toxicity
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Along with liver and kldney several other organs such as brain, heart, lungs, spleen, stomach caecum and testls/ovary are
also tested and no toxicity is found.
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CELL AND GENE THERAPY SYMPOSIUM

Combination of transfection incompetent lipids having strikingly different aliphatic chain lengths in a 'A

CHRISTIAN MEDICAL COLLEGE liposome demonstrates superior transfection and produces high titre lentivirus. iInStem
Yashodhal, Ramya 2, Sevanthy 2, Gokulnath 2, Rajesh Kumar2, Mohanraj?, llavarasan 1*, Srujan* cﬂmcm§m(c:m&mm
1 CCRAS, Arumbakkam, Chennai, Centre for Stem Cell Research (CSCR), Bagayam, Vellore. (a unit of nStem, Bengalum)
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Introduction: Amino acid-based liposome and its Gene delivery application Characterization of Lipids

Cellular uptake and expression studies & FRET Assay

» This study introduces a liposomal gene delivery system using ionizable lipids from

glycine, phenylalanine, and tryptophan. ok e S e s ' »  Despite similar internalisation profiles, Lipo2 and Lipo3 achieved higher transfection rates, emphasising the

» Combined with cationic lipid and cholesterol, the formulations showed strong importance of post-uptake processes in gene delivery.
r * Asshown in Fig.5(C), the cationic liposomes of Lipo3 exhibited approximately 3.5-fold higher biomembrane

fusogenicity compared with those of Lipol0 and Lipol3.

transfection efficiency across cell lines.

» The optimized system also enhanced lentiviral vector production, supporting
affordable gene therapy.

100+

- - — \ i : « - Lipo-2 . .. Lipo-3 B ¢
Importance of liposomes and their application - s l . , . s
! Q
I I W= | g
» Liposomal platforms have also demonstrated improved delivery and functional —= N G e e o S
expression of MRNA and siRNA in vivo. 2
> mRNA-2416, encoding OX40L, is a liposomal mRNA drug currently in clinical trials for Fig .2. H-NMR, HR-MS spectrum of C6G
cancer immunotherapy due to its strong antitumor immune activation.
100
» mMRNA-2752, encoding OX40L, IL-23, and IL-36y, is also under evaluation for its ability Transfection analysis of liposomes ¢ = : Aeiio h?;‘:?fim
to elicit robust immune responses against tumors. » ~+-Lipo-13 , e 1/ 7\
5 60 #-Lipo-3 ,.
*  Fluorescence microscopy image and flow cytometry analysis of liposome transfection in different g2 Lipo-10 - o 505 ITTIREE
cell lines. 25 hexc \  FRET Aemi
. . . C .. 53 / \ 000000000
‘ Hsicochernical Ch — ‘ . Incorporating hydrophobic aromatic moieties into lipid head groups enhances membrane €82 //——-"/‘ R
Physicochemical Characterization interaction and boosts transgene expression. § .
_ _ _ N * Multiple factors, including particle size, surface charge, head group design, and intracellular = s 10 15 20 25 30 184488648 el
= DLS were used to analysis the zeta size and zeta potential of at lipid-to-DNA charge trafficking, influence transfection efficiency. TIME(MIN) e P00 b 0000
ratios of 1:1, 2:1, 4:1, and 8:1, using plasmid DNA as the payload. «  Further cellular uptake studies are needed to clarify the underlying mechanisms. o S300m 595 fluorophore e
N Ry s00 000000
= Lipoplexes containing heterocyclic aromatic amino acids (e.g., Lipo3 and Lipo6) \ / 4 O — |
exhibited comparatively lower surface charges than those with simple phenyl moieties : : = T ‘ w a75om /7 |\ ot S0 \ indicates the efficiency of liposome
(e.g., Lipo2 and Lipo5), and markedly lower than those with non-aromatic headgroups ot K ‘ 0 - — M NBDPE Rho-PE e

(e.g., Lipol and Lipo4).

Fig.4. shows Rhodamine-PE-labelled liposome uptake and RFP-positive HEK293T cell quantification via flow
cytometry at optimal lipid/DNA ratios. Fusogenicity of Chol/lipid 3, lipid 4, and their combination was evaluated

A0 =
using FRET-based bio-membrane fusion assays
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Lentiviral vector Post-Transduction Evaluation and Optimization

&
» HEK293T cells were transduced with lentiviral vectors and harvested post-trypsinization for flow cytometry
analysis of ZsGreen expression.
» Transduction efficiency was measured via FITC channel fluorescence using a BD Celesta cytometer.
A titration study compared Lipofectamine™ (LFV) and Lipo-3 at a fixed N/P ratio of 2:1.
» Lipo-3 outperformed LFV at 10 pL input, yielding higher ZsGreen-positive cell percentages.

» demonstrate the enhanced transduction efficiency and stronger fluorescent signal intensity achieved with Lipo-3.
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Fig. 1. Characterization of lipoplexes by (A) Particle size (Diameter) and (B) Zeta potential
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Lentiviral vector
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Transfection @ Characterization
T ' - . c - Fig. 5. (A) Quantification of pseudoviral particles by p24 ELISA and the vector map of the lentiviral transfer

Functional Characterization

. o L T e plasmid used in this study. (B) Pseudoviral infectivity was assessed 72 hours post-transduction by fluorescence
F ot NH S microscopy. © Transduction efficiency is quantified as transduction units, calculated from the percentage of
3 ’ :: \ ZsGreen-positive cells measured by flow cytometry. Data are presented as mean £ SEM (n = 3)
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Conclusion

Cellular uptake
study

» Thirteen liposomal formulations were developed for gene delivery, with Lipo2, Lipo3, Lipo5, and
* Lipo6 showing superior transfection efficiency over Lipofectamine™ 3000.
» Lipo-3 lentiviral vectors achieved higher transduction and ZsGreen expression in target cells.
* Enhanced delivery was linked to circular nucleic acids and hydrophobic R-group structures.
These formulations offer promising, safer, and cost-effective options for gene therapy and vaccines.

Physical Characterization
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Introduction and Hypothesis

Enhancing corneal endothelial proliferation and long-term expansion using

antioxidants: A step towards advancing stem cell-based regenerative therapies
Ajgaonkar B.!, Dandekar P!, and Jain R*

1. Department of Pharmaceutical Sciences and Technology,

* Corneal endothelial dysfunction is a leading cause of vision loss worldwide.

* Current treatment relies on keratoplasty (corneal transplantation); however:

» Severe donor tissue shortages exist globally.

» Procedures involve complex surgery, risk of immune rejection, and demand lifelong ,

2. Department of Biological Sciences and Biotechnology,

Institute of Chemical Technology, Mumbai
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Material and Methodology

e Cell Source & Culture

Bovine corneal endothelial cells (BCECs) isolated from abattoir

corneas using dissection and enzymatic digestion.
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temperature, CO>).
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associated features.

Maintained under optimized endothelial culture conditions (medium,

Characterized for morphology, CEC-specific markers, and barrier-

. 9 o : N\ by * Antioxidant Screening
postoperative care f % Challenges Associated Prc‘ﬂ:?:on
' e l ° o Three classes tested:
* Cell-based regenerative therapies present a promising, donor-independent alternative. Y- St ) 0 Sttt 1.  ROS scavengers (direct neutralizers)
A major challenge: Corneal endothelial cells (CECs) show: Vi i \\.\ - T S et e * 2. Stable vitamin C derivatives (long-lasting redox balance)
J e ' | e L rigros | 2swewmnc | smotsrwox 3 Thiol-based regulators (e.g., cysteine, boosting glutathione).
» Low proliferative potential. | D Laemed law s S ~ v B o | S
, / s o tom g, | ST MTTemeelmionims ST ey @0 \/) o | (@ X Cytotoxicity Assay
> ArreSt m Gl phase' ' 4 Thiamine Hydrochloride 10mM 50.820 . . ® = - : < <
S P , y L L ok IS LR MTT assay performed to determine safe, non-toxic concentrations.
. . , , Major Challenge | e L e || e e
» Endothelial-to-mesenchymal transition (EndMT) during extended culture, leading to loss _ - - = 2 . ﬂ ﬂ
CHALLENGE: Oxidative Stress in CECs T 6 Positive Control - 6.18+0.2 £ 9 ° °
f functi x> % %y g o WLECELE = * Experimental Design
of function. (B - T - S
V(&2 * % 7 NemiveConie o ¢ o Groups: untreated control, single antioxidant treatments, and dual
* Oxidative stress plays a central role in limiting CEC proliferation and stability. T — l i 4= combinations.
. . L. L : Strategies ¢ o Evaluated across passages to assess long-term proliferative and
* Antioxidants (ROS scavengers, stable vitamin C derivatives, thiol-based redox regulators) may T Morphologica Protfaaton ssessment | | Combinatonstudies | . -
¢ Assessment mOI'phOIOgICEll Stablllty.
help . SOLUTION | Oservng for
) roups: .. associated . . .
> p " hol © & nuesedcon E4 shangesup o & « Morphological Monitoring
reserve native morpholo i ntioxidant-treate —> —> :
P 8Y; Antioxidant Treztment g BOEC (ndividual AR 0@@ ° o Microscopy used to track hexagonal morphology and EndMT changes
N N combinations 4:/ V
> Promote proliferation, ' [ rewemy ] L up to passage 6 (P6).
; ® @
» Extend th . lif . it OXIDATIVESTRESS  PROMOTE PROLIFERATION | Dl s T | e ®
xtiecn C cxpansion iiespan in vitro. rip) (@ e arallel evaluation across Synergistic Effects: . . .
p p ( | ) {\/\_ Eassggles(PlO-FEG) Lower Passage iroﬁir:::(;idand ® Comblnatlon StUdles
Hypothesis: GendsinVivoLipan  Expasion i @@ Dual supplementation tested for synergistic effects, combining
: .. : : : : : immediate ROS neutralization with sustained thiol-based redox support.
Strategic antioxidant supplementation will boost corneal endothelial cell proliferation, safeguard ' ——
) ) ) ) ) POSITIVE OUTCOMES Hexagonal Morphology . .
against EndMT, and sustain long-term expansion, thereby overcoming a key barrier to scalable, @ @ @ * Proliferation Assessment
i =i ° o Ki-67 used as a proliferation marker.
donor-independent regenerative therapies for corneal blindness. Preseies Native e sl C e . . .
P g P i e ¢ o ICC: visualization of Ki-67 expression.
° o Flow cytometry: quantitative analysis across passages (early — late)

Transitioning to combination studies

Results

Study of the effect of individual antioxidants on cell proliferation through ICC of Ki67 at passage 4

Results

. . exploring potential synergistic effects
Establishment of stable cultures of isolated cells

Characterization of BCECs using ICC for Z0-1 tight Junction and Na-K ATPase Protein with Alexa Fluor 633 and 488

A B @
INDIVIDUAL ANTOXIDANTS ANTIOXIDANT COMBINATION
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E Cell Proliferation Cell Proliferation
(Passage 1-4) (Passage 5+)
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PROLIFERATION CAPACITY: UP TO
TO PASSAGE 4

PROLIFERATION: EXTENDED TO
HIGHER PASSAGES

CONTROL

Fig 02: Immunocytochemistry of isolated and cultured BCEC with respect to the expression of (A) ZO-1 tight junction proteins (red tagged with Alexa Fluor 633),(B )Nuclei stained with
Hoechst (C) Merged Image for expression of ZO-1 protein and nuclei (Red tagged with Alexa Fluor 63 Blue: Hoechst stained nuclei

Fig. 13: Ki67 ICC in BCECs treated with ascorbic acid-2-phosphate dihydrogen phosphate
magnesium (A) and L-ascorbic acid (B). Nuclei (DAPI, blue) in Panel 1; merged images in Panel 2;

(DAPI, blue); Panel 2: merged images, Panel 3: Ki67 expression. Scale: 50 um.

Fig. 14: Ki67 ICC in BCECs treated with cysteine (C) and untreated controls (D). Panel 1: nuclei l

Ki67 expression in Panel 3. Scale: 50 um
Study of the effect of the combination of antioxidants on cell proliferation at higher passage through ICC of Ki67

Investigation of the Combined Effects of Antioxidants on Cell
Proliferation

Fig. 01: A) and B) represent PO BCECs from bovine
corneal tissue exhibiting hexagonal, cobblestone
morphology, indicative of their native phenotype and
functional integrity.

Control AA1+AA2 AA2+AA3 AA1+AA3

Fig 03: Immunocytochemistry of isolated and cultured BCEC for the expression of (A) Na*K *ATPase (Green tagged with Alexa Fluor 488),(B) Nuclei stained with Hoechst (C) AA1+AA2 AA2+AA3 CONTROL

Merged Image for expression of Na*K *ATPase protein and nuclei (Green tagged with Alexa Fluor 63 Blue: Hoechst stained nuclei).

Fig. 15: B-D, P6 BCECs treated with antioxidant combinations on Day 14; A, untreated control cells.

Fig 16: Ki67 ICC in BCECs treated with antioxidant combinations: (A)AAl
ascorbic acid-2-phosphate dihydrogen phosphate magnesium(1.5 mM) +
AA2 L-ascorbic acid (1.5 mM); (B)AA2 L-ascorbic acid (1.5 mM) + AA3
cysteine (10 mM). Nuclei (DAPI, blue), Ki67 (red), merged. Scale: 100 yum

Fig 17: Ki67 ICC in BCECs: (C) AA1 ascorbic acid-2-phosphate
dihydrogen phosphate magnesium(1.5 mM) + AA3 cysteine (10 mM); (D)

o o . o . untreated control. Nuclei (DAPI, blue), Ki67 (red), merged. Scale: 100 yum.
Cytotoxicity testing for selected antioxidants

Selected antioxidants were evaluated for cytotoxicity testing at the concentration reported in different studies.

Comparative quantification of Ki67 expression in BCECs by flow cytometry: assessing differences between untreated P2 and treated P4 cells
90

MTT assay of anti-oxidants No. Antioxidants Concentration Antioxidants Selected for Study
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Fig 04: Graphical representation of the percentage viability for
shortlisted antioxidants for cytotoxicity testing through MTT
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Cytotoxicity testing of selected antioxidants on BCECs across concentrations to identify safe dosage.
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MTT assay of Glutathione Fig. 18: Graphical representation of Ki-67 expression in P4 BCECs subjected to antioxidant

treatments

Fig 19:Graphical representation of Ki67 expression in BCECs at P4 (treated) and
P2 (untreated)
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. Conclusion
% * Targeted antioxidant supplementation, combining immediate ROS neutralization with sustained redox support, extends BCEC proliferative lifespan
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while maintaining functional morphology and preventing EndMT.
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Fig 05: Graphical representation of the percentage viability for AA1 Fig 06: Graphical representation of the percentage viability for AA2 Fig 07: Graphical representation of the percentage viability for

for (0.5-2.5mM range of concentration) for cytotoxicity testing For (0.5-2.5mM range of concentration) for cytotoxicity testing AA3 for ( 2-14 mM range of concentration, for cytotoxicity testing

through MTT through MTT through MTT

This strategy overcomes a major barrier to scalable corneal endothelial cell expansion and supports donor-independent regenerative therapies for

Fig 08: Graphical representation of the percentage viability for
glutathione( 1-10mM range of concentration) for cytotoxicity

testing through MTT COI’Ileal bhndness.

Morphological changes observed in BCECs with P0 to P4
without antioxidant treatments

Treatment of BCECs with shortlisted antioxidants initiated at passage 3

Future flow cytometry studies at higher passages (up to P6 and beyond) will validate antioxidants as drivers of BCEC longevity, addressing cell-

cycle limitations and advancing cell-based therapies for corneal endothelial disorders.
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Microfluidic triple-co-culture model of age-related macular

degeneration for advancing retinal drug development

Pradnya S., Prajakta D*.
Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Matunga, Mumbai, India -400019

Materials & Methods
01. Microfluidic device fabrication J

CROLE

Semipermeable membrane Culturechamber | [ Flow chamber

= Device design: Device were designed using Fusion 360 software and printed using SLA 3D printer; standard resin

Introduction

Stutune of Bve Retiew . Y .
Diseases specific to retina

|, Retinal
organoid
RPE

em
[ HUVEC

= Sterilization Proces
sterilize by UV 20 mins

Devices were given Ethylene Oxide (EtO) treatment followed by 70% IPA treatment for 1/2 an hour. Further

World Health Organization (WHO) estimates that 314 million people have visual impairment worldwide, of whom 269 million have low vision
and 45 million are bind.

{ 02. Computational validation: Velocity & Pressure distribution

Most of the retinal diseases involve an irreversible damage to outer retina.

g r.:; ua l %] ‘ . Limitations of Traditional Models:

e

> Fluid flow did not result in any dead zones within the proposed device
» Hence maximum reach of the nutrient medium to the cells adhered over the membrane of the basolateral flow
chamber In fig (b), we observed secondary flow behavior within the cell culture chamber, secondary flow aids
in smooth nutritional flow within the semi-permeable membrane
Nomal  EaryAMD  ntermediste  Lato AMD 1o AVD . N ) _ L. R .
AvD P (Neovascular) » The pressure generated by the nutrient medium fluid flow exerts no significant effect on cellular proliferation,
et AvDl making it suitable for cellular studies

| =

Organ-on-a-Chip:

2.3. Surface marker analysis using ICC; ARPE19 cells

1. Development of triple co-culture

2. Characterization of 1 triple-co-cultur
1.1. Development of triple co-culture using flow device C cterization of developed triple-co-culture

(A) RPE65

Optimized culture conditions:
Seeding Density and incubation time:

(A) HUVEC cells seeded on the basolateral side:1e5, 72 Hr of incubation
(B) Retinal Epithelial layer on apical side: 1e3, 48 Hr of incubation

(C) Photoreceptor seeded with LC Matrigel (1:1): 3e4, 24 Hr of incubation

2.1. Live/ Dead analysis of all three layers:
[

Figure: Live/dead analysis; (A) HUVEC layer seeded on the basolateral side (B)
ARPEI19 cells seeded at the apical side, (C) 661W cells embedded in the Matrigel

2.2. Tight junction analysis of Epithelial cells:

A. TEER Measurement B. ZO-1 Marker expression

(A) PAX6

s
-
™

-

(B) RPE65

3. Induction of AMD disease condition DAPI Z0-1 MERGE

3.1. Optimization of Disease induction 3.2. Reactive Oxygen Species Quantification

Conclusion

This investigation focuses on the development of triple-culture of retinal epithelial, endothelial and photoreceptor
g ve related macular degeneration (AMD) model using microfluidic platform

—_

Glucose 21mM

-BHP 100nM z
Cholesterol 12.5ug = T Retina on a chip prototype was designed and computationally validated for pressure and velocity of fluid flow.
g g G00H
VEGF 100ng - The device was then operated at the computationally derived flow rate of 1 pL/min and the triple-coculture was
o a0 400000
DIl (Glu, t-BHP, Cholesterol) ~ 21mM, 100nM, 12.5 oA, established
i€ " Developed triple-culture was analysed for cellular viability and proliferation, marker expression, barrier integrity
&k gt # R Pk and permeability in order to characterize the developed model
DI2 (Glu, tBHP, Cholesterol,  21mM, 100nM, 12.5 :}f"f e ‘;.«.Pﬁs o I bty | ¢ pe © .
VEGF) ug, 100ng A disease induction protocol was established to mimic the pathophysiological conditions of AMD, further ROS
Trewtmant condition S p—— level were quantified with respect to disease induced model as compared to healthy cells
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e e B e e
B e G R Vv
Ptk e A oo R i
S s e 0 s Ly o 5 e AR S8
e e e e e

Future Outlook

= The retina- on-a chip model will serve as an alternative to animal model with a high throughput drug screening platform. Email: _
= In vitro disease model of AMD can further be used for testing several drugs for reversing the disease. pradnya.salve@nano-
= These model can therefore be more relevant for drug screening than traditional animal model used. ¥ e et medicine.co.in
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Molecular Links Between Circadian Genes and Breast Cancer Prognosis

JILSHEENA. P K and SUMATHI.S

Department of Biochemistry, Biotechnology and Bioinformatics, Avinashilingam institute for Home Science and Higher Education for Women, Coimbatore-641043, Tamil Nadu, India

Role

Dysregulation of sleep-related and
circadian genes—including PERZ,
BMAL1, CLOCK, CRY, SIRT1, NF-
and ROR-—contributes
development, progression, prognosis,
and cancer stem cell maintenance In
Modulation
genes
offer
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Materials and Methods

Master
regulator

CLOCK

metastasis
This review Integrates published data

(2015-2025) from patient genomic
preclinical
clinical outcome analyses. Sources
transcriptomic
datasets,
paradigms,
knockout/overexpression in cell and
models, and gene-targeted
editing,
melatonin
and
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and
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Include
methylation
disruption

Overactivity:
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chemo
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Epigenetic
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_ SIRT1
animal

therapies
chronotherapy,
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lineage-tracing techniques were used
to evaluate gene-specific impacts on
cancer stem cells.

Overactivatio
n. relapse,
poor
Prognosis

(e.g., gene

Inflammat

-kB

Single-cell survival

Mutation:
tumorigenesi

s, advanced
stage

Nuclear
receptor

em el Results/Observations

» Knockdown/mutation of PER2, BMAL1l, CLOCK, and CRY

accelerates tumorigenesis, metastasis, and worsens prognosis.
Highlevels  »~ SIRT1 and ROR dysregulation alters cell cycle, apoptosis, DNA
suppress repalr, and Increases treatment resistance.
©SCpool 5 Disruption, especially NF-xB  pathway changes, enhances
oot Inflammatory signaling and cancer stem cell renewal.
ncreases > Clrcadian disruption increases breast cancer stem-like cell markers
CSC features  (CD44"M+/CD24™-).
» Clinical data link poor sleep/circadian disruption to reduced survival,
higher recurrence, and chemoresistance.

Directs

stemness via » Restoring PER2/BMALL expression or using

cell cycle chronotherapy/melatonin can suppress tumor growth and enhance
therapeutic response.

Regulates

via p21/cell Conclusi()n

cyeie Circadian and sleep genes significantly regulate breast cancer etiology
N anq the _dynamic_s of cancer stem cells through direct trans_criptio_nal,
cscsin  eplgenetic, and immunological pathways. Their dysregulation drives
stress cancer Initiation, progression, and therapy resistance by expanding CSC

pools. Targeting these genes through gene therapy, chronomodulated
ncreases — drugs, or lifestyle adjustments shows promising translational

stem marker

expression  Opportunities for breast cancer management.
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Glucocorticoid Receptor-Mediated Drug Delivery System Against Aggressive Oral Cancer
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Saponin-based liposomal gene delivery system for
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INTRODUCTION

Induced pluripotent stem cells (1PSCs) 1llustrate unharnessed potential in
precision therapeutics and personalized medicine. However, low
reprogramming efficiency and cell turnover remain to be critical
challenges, limiting their clinical translation, with traditional methods
achieving success rates of only 0.0006-3%. This inefficiency increases
production costs and compromises the scalability of iPSC-based therapies.

While small molecules such as valproic acid, CHIR99021, and ascorbic
acid have been introduced to reprogramming protocols as they are known
to increase efficiency by 100 fold, responsivity of iPSCs to these chemical
reprogramming agents remains to be low and 1s observed to diminish over
time. This phenomenon of drug resistance 1s particularly concerning due
to the critical role they play in modern reprogramming protocols and their
service as safer alternatives to viral delivery systems.

While recent evidence point to drug resistance in cancer cells via
expression of survival pathways, such mechanisms are not well defined 1n
1IPSCs. We suggest that Integrins play a central role in this resistance
mechanism. Other gene families, especially BIRC and CXCR have been
identified as critical determinants of drug resistance across multiple
cancer types, with its expression correlating inversely with treatment
sensitivity. Integrin dysregulation represents a critical and relatively
underexplored mechanism contributing to reprogramming inefficiency.
Integrins are known to mediate mechanomodulation, whose disruption
may i1mpair the cellular machinery responsible for small molecule uptake,
creating a physiological barrier to effective reprogramming.

The interaction between Integrins, CXCR family members and BIRC
survival signaling cascades thus needs to be studied as 1t can be
hypothesized that they are responsible for creating robust resistance
networks that protect cells from external perturbations. Here we can refer
to the PI3K-AKT-NF«kB signaling pathway which serves as a central hub
integrating these resistance mechanisms.

Hyperactivation of PI3K-AKT signaling pathway may be creating a
"resistance state" characterized by enhanced cell survival but reduced
responsiveness to external reprogramming factors. Understanding these
interconnected resistance mechanisms is crucial for developing strategies
to enhance reprogramming efficiency and advance 1PSC-based
therapeutics toward clinical reality.

We conducted a study comparing iPSCs with embryonic stem cells (ESCs)
using publicly available data from Gene Expression Omnibus (GEO), as
indicated 1n table 1.

. . Reprogramming state of
Dataset Organism Comparisons oenerated iPSCs
GSE38265 | Homo sapiens ESC Vs1PSCs Early
E iP
GSE69626 | Homo sapiens SCs vs generated IPSCs Middle
GSE239446 | Homo sapiens Dertved NSCs vs hiPSCs Late

Table 1: Datasets chosen with their details given.

Mechanistic Insights into iPSC Drug Resistance

Our transcriptomic analysis provides compelling evidence for a coordinated resistance network 1n 1PSCs that significantly impacts reprogramming efficiency. Data suggests a

MATERIAILS & METHODOLOGY

Data acquisition
All of the RNA-seq files were obtained online at the Gene
Expression Omnibus (GEO) to conduct this integrative analysis.

Data Processing

Raw read counts were obtained from GEO. These underwent cross-
platform normalisation to minimise batch effects. This normalised
data was used for global PCA clustering and t-SNE plot.
Simultaneously, raw read counts were used as input for global data
visualization and differential expression analysis by the DESeq2
Bioconductor package (v1.8.1) in the R environment (v4.1.1). For
differential gene expression of, [log2FC | > 1 and adjusted p-value
(padj, Benjamini—Hochberg correction) <0.05 were used as the cut-

off to define statistically significant differentially expressed genes
(DEGS).

Data Analysis

We did two types of analyses, we did within-dataset analysis and
then compared them post hoc and we also performed combined
differential expression and network/pathway analysis across
datasets. Over-Representation Analysis was done using
clusterProfiler package in the same R environment. The functions
of up- or down-regulated genes in 1IPSCs vs. comparative cell type
were 1nvestigated by wusing the Database for Annotation,
Visualization and Integrated Discovery (DAVID) v 6.7 based on
gene ontology (GO) annotations.

Data visualisation

Visualisation was done in the form of heatmaps, volcano plots,
cluster graphs and differential statistical representations. Global
expression profiles were assessed using t-SNE plots, hierarchical
clustering, distribution of gene expression clustering and
visualisation of gene expression profiles.

Gene PCA Clusters (k=5) with Functional Coloring

Gene PCA Clusters (k=35) with Functional Coloring

Fig 1: The statistical significance of cross platform normalisation. Left represents
global PCA clustering of genes with cross platform normalisation and right represents
global PCA clustering of genes without cross platform normalisation.

DISCUSSION

RESULTS

Transcriptomic Analysis Reveals Coordinated Expression of Resistance Pathways

Our comprehensive transcriptomic analysis i1dentified a consistent dysregulation of BIRC family genes in 1PSCs
compared to embryonic stem cells. BIRC2 and BIRCS5 are consistently downregulated with an average fold
change of -1.5. GSE239446 shows hyper activation of BIRC3, with an upregulation of 4.

CXCR chemokine receptor expression analysis revealed striking dysregulation patterns across multiple family
members. CXCR4, CXCR5 and CXCR6 expression is highly varied ranging between a 5 fold upregulation to a 3
fold downregulation (p<0.05) while others show minimal biological variation and statistical insignificance.

PI3K-AKT-NFkB Pathway Activation in Drug-Resistant iPSCs

Integrative pathway enrichment analysis using REACTOME revealed significant enrichment of PI3K-AKT
signaling components 1in 1PSCs displaying MET activation of PI3K-AKT and its corresponding events in ERBB2
signaling. Key pathway components, as indicated 1n table 2, show elevated expression, as high as up to logFC ~ 9.

Gene PI3K Role Pathway position Functional Impact
GAB1 Direct Activator Upstream scaffolding High
SMAD?2 Cross talk partner TGF-B/PI3K integration High
CCND2 Downstream partner G1-S cell cycle control High
PPP1R12B Negative regulator Upstream inhibition Moderate
KCNJ13 Indirect supporter lon homeostasis Low

Table 2: Common significant genes in all datasets with their functional summary.

Integrin Expression Dysregulation

Integrin family analysis revealed substantial dysregulation affecting multiple family members critical for cellular
adhesion and mechanotransduction. GSE38265 demonstrated selective upregulation, which was reproduced in
GSE69626, implying experimental reproducibility of results, even from different labs. GSE239446 exhibited
broader integrin dysregulation with 13 significantly altered genes (padj < 0.05), including 12 upregulated and 1
downregulated integrin subunit. This dysregulation pattern was consistently observed across multiple 1IPSC lines
derived from fibroblast source cells.

The most dramatically affected integrins show a 3-6 fold dysregulation 1n expression representing a lesser
appreciated mechanism in reprogramming. Such dysregulation 1s contributing to the stemness, ECM remodeling,
cell adhesion, migration and basement membrane organization.

Functional Annotation

Functional annotation shows that dysregulated integrins are primarily involved in extracellular matrix interactions
and mechanotransduction pathways (GO enrichment p < 0.05). The altered integrin profile 1s predicted to
diminish cellular mechanosensitivity and small molecule uptake efficiency.
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that diminishes cellular uptake of reprogramming small molecules. Elevated expression also stiffens focal adhesion complexes, reducing membrane deformability and endocytic e |
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FAK/Src mhibitors or mechanical conditioning regimen could restore membrane dynamics and enhance small molecule delivery 1n fibroblast-derived 1PSC cultures. / \
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Implications for Regenerative Medicine o ] / "
The clinical implications of drug resistance in 1IPSCs extend beyond reprogramming efficiency to encompass safety and therapeutic efficacy. Cells with enhanced survival E / \
characteristics may exhibit increased tumorigenic potential, necessitating careful evaluation of resistance pathway activation in therapeutic applications. However, the same /
mechanisms that create resistance barriers may also provide enhanced engraftment potential following transplantation, suggesting complex trade-offs in therapeutic optimization e | | e / \
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Our findings suggest the need for therapeutic intervention strategies that can help elevate reprogramming efficiency. Targeted inhibition of BIRC proteins using SMAC
mimetics could potentially overcome resistance while maintaining cell viability. Similarly, intracellular CXCR4 modulation rather than surface expression may enhance cellular oo e
responsiveness without compromising survival. While our recommendation implies that iPSCs need to be treated similar to drug resistant cancer cells, the prevalence of similar
expression patterns prerequisite such drastic protocol changes. The coordinated nature of resistance pathways suggests that combination approaches targeting multiple

components simultaneously may achieve superior outcomes.
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GENERATION OF OFF-THE-SHELF CAR-T CELLS FOR
B-CELL MALIGNANCIES

INTRODUCTION

 CAR-T cell therapy revolutionized cancer treatment by achieving remarkable success in B-cell malignancies. Yet, challenges persist such as manufacturing delay and antigen escape.

* To address these challenges multitargeted “off-the-shelf” products are being investigated.

* Genome editing with CRISPR/Cas9 supports allogeneic CAR-T cell development but poses several risks including double strand DNA breaks, genomic rearrangements and
chromothripsis.

* Base editing, by contrast, enables precise nucleotide changes without double strand DNA breaks, reducing genotoxicity and expanding therapeutic potential.
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* The CD19 CAR construct achieved ~40% expression upon transduction into primary T cells

derived from healthy donors . REFERENCES
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INTRODUCTION METHODS
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CONCLUSION AND FUTURE DIRECTIONS ACKNOWLEDGMENTS

This study presents an integrated Al-driven and mechanistically guided approach to overcome two major barriers in CAR T cell therapy: antigen escape, and limited cellular persistence. By combining We thank the Jamia Millia Islamia (JMI), Indian Institute of Technology Kanpur
large-scale in-silico CAR design screening through the CARMSeD model with PROTAC-mediated AKT3 degradation, we demonstrated substantial improvements in CAR T cell metabolic fitness, memory (IITK), CSIR-Indian Institute of Chemical Biology (CSIR-IICB), and Christian
differentiation, and antitumor durability. The activation of the AKT3-FOXO4 regulatory axis emerged as a key determinant of long-term CAR T cell function. Furthermore, extending this design to a trispecific
CD19/CD20/CD22 platform incorporating a secretory BITE system provided a powerful solution to antigen heterogeneity without compromising safety.

Building on these findings, future studies will focus on:

Clinical translation of AKT3-PROTAC—-engineered CAR T cells through GMP-grade manufacturing and first-in-human trials for refractory B-cell malignancies.

Expanding the PROTAC platform to target other exhaustion regulators such as PD-1, LAG-3, and TIGIT to fine-tune CAR T functionality.

Integrating synthetic gene circuits and temporal degradation switches for controlled modulation of signaling and metabolic pathways.

Evaluating efficacy in solid tumor models using tumor-specific antigens like Claudinl8.2 and EGFR under hypoxic and immunosuppressive microenvironments.

Al model enhancement with multi-omics data to improve predictive accuracy of CARMSeD for personalized CAR design and patient stratification.
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support, and ethical compliance. We also acknowledge the collaborative
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technical expertise.

Al e e

REFERENCES -
Cappell, K.M., and Kochenderfer, J.N. (2023). Long-term outcomes following CAR T cell therapy: what we know so far. Nat Rev Clin Oncol 20, 359-371. https://doi.org/10.1038/S41571-023-00754-1.,.

Mishra, A., Maiti, R., Mohan, P., and Gupta, P. (2024). Antigen loss following CAR-T cell therapy: Mechanisms, implications, and potential solutions. Eur J Haematol 112, 211-222. https://doi.org/10.1111/EJH.14101,.
Shah, N.N., Johnson, B.D., Schneider, D., Zhu, F., Szabo, A., Keever-Taylor, C.A., Krueger, W., Worden, A.A., Kadan, M.J., Yim, S., et al. (2020). Bispecific anti-CD20, anti-CD19 CAR T cells for relapsed B cell
malignancies: a phase 1 dose escalation and expansion trial. Nat Med 26, 1569—1575. https://doi.org/10.1038/S41591-020-1081-3,.



https://doi.org/10.1038/S41571-023-00754-1
https://doi.org/10.1111/EJH.14101

CR:SPR

BiTS Towards Personalized Therapies: CRISPR-Based Correction of RDH12
A ey Mutation in Leber Congenital Amaurosis CurieCrisp

Nancy Deep, Kruthika BS, Annes Siji, Prakruthi UN, Vijay Chandru, Vandana Hegde, Vaijayanti Gupta, Arvind Murali Venkatesan, Reety Arora.
Affiliation: CrisprBits Laboratory, Alumni Association, UAS(B) Hebbal, Veterinary College Campus, Bangalore-560024, India

INTRODUCTION

Rare diseases are a major healthcare challenge in India, defined by the NPRD, 2021, as conditions affecting fewer than 1 in 2,500 individuals. Despite the policy, over 300 patients
still lack access to essential care due to limited awareness, high costs, and weak research infrastructure. CRISPRBITS aims to tackle these barriers using CRISPR-based genome editing
to develop affordable therapeutic solutions. Its core technology, CurieCrisp, is a proprietary platform built on enhanced FnCas9 (enFnCas9). CurieCrisp enables precise modelling
and correction of rare genetic diseases using patient-derived iPSCs.

The current research focuses on Leber Congenital Amaurosis (LCA), a group of inherited retinal dystrophies causing progressive photoreceptor degeneration. One form of LCA is
linked to mutations in RDH12, an enzyme vital for retinoid metabolism in the visual cycle. A specific nonsense mutation in exon 3 of RDH12 (C>A, p.S13Ter) leads to early-onset
retinal degeneration and severe vision loss. CRISPRBITS hypothesizes that correcting this mutation in patient-derived iPSCs can restore RDH12 expression and activity. This
correction could normalize retinoid metabolism and enhance photoreceptor survival and function in retinal cells or organoids.
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Patient derived iPSc cells were transfected using Lipofectamine reagents and CRISPR RNP Complex and ssODN for correcting the mutation. After selecting for Cas9-GFP expressing cells and serial

dilutions we obtained a heterozygous corrected clone.

Representative Image of fluorescence microscopy showing GFP expression 24 hours post-lipofection at 10x magnification.

CAGAAGTTGGAACGATGCTGGTCACCTTGGGACTGCTCACCTCCTTCTTCTCGTTCCTGTATATGGTAGCTCCATCCATCAGH

GTCTTCAACCTTGCTACGACCAGTGGAACCCTGACGAGTGGAGGAAGAAGAGCAAGGACATATACCATCGAGGTAGGTAGTC!

C>A mut

CAGAAGTTGGAACGATGCTGGTCACCTTGGGACTGCTCACCTCCTTCTTCTCGTTCCTGTATATGGTAGCTCCATCCATCAGTC

CAGAAGTTGGAACGATGCTGGTCACCTTGGGACTGCTCACCTCCTTCTTCTAGTTCCTGTATATGGICAGCTCCATCCATCAGC
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Isolation and Screening of Clonal Populations - o o v Y

Twenty-four hours post-lipofection, four initial clones were isolated and subsequently bulk-sorted into 42 individual clones. After 10 days of culture, each clone
was split — half of the well was cryopreserved, and the remaining cells were analyzed by PCR and sequencing. Of the 42 clones analyzed, 26 exhibited
heterozygous correction.

CONCLUSIONS

Although the observed correction was limited and mosaic, the results underscore the potential of CRISPR-based strategies for precise genome editing in rare retinal disorders. Further
optimization of transfection conditions and HDR parameters will be required to enhance efficiency.

Corrected iPSC lines generated in this study may serve as a foundation for retinal organoid modelling and the development of personalized gene therapies for RDH12-associated Leber
Congenital Amaurosis.

This is our first proof of principle study for evaluation of our CurieCrisp platform and we are excited to see how the heterozygous corrected line will behave upon differentaion.
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Background Materials and methods

* Neural tube defects [NTDs] are severe congenital malformations in humans.

* The etiology of NTDs 1s poorly understood. Dletary Folic Acid o
 NTDs are considered to have multifactorial etiology which include genetic mutations and environmental factors . \Me‘am"sm
* The present animal model studies do not exemplify human NTDs completely as there are differences 1in genomes,

Folate Cycle @/

molecular mechanisms, timing and cellular process of Neural tube[NT] formation.

* Dysregulated epigenetics particularly during embryogenesis results in abnormal genome wide methylation which e f = — o .

has been linked to NTDs.

ethyl
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* Maternal exposure to teratogens like valproic acid(VPA), azacytidine(AZA) and dietary folic acid(FA) deficiencies

lead to neural tube defects.
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3. SH-SYS5Y cells and 1PSCs treated with Valproic acid and 5-Azacytidine have increased total cellular proteins.
4. Neural cysts treated with Valproic acid have a more expanded apical surface [ ZO1 Staining] indicating insufficient apical
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RESULTS

INTRODUCTION
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INTRODUCTION

targets.

*Breast cancer -heterogeneous disease influenced
by genetic, hormonal, and environmental factors.
Endocrine-disrupting pesticides (EDPs) mimic
or interfere with natural hormone signaling.
‘Estrogen receptor alpha (ER-0) -regulator of
breast cancer tumor behavior.
*Environmental exposures, such as pesticides, may
initiate and promote breast cancer progression.
*Understanding pesticide—-ER-a interactions can
provide insights into disease risk and therapeutic

RESULTS

Docking of Cyhalothrin Pesticides with ER-a”
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Methodology

1. Data collection

Download ER-a crystal €1 structure (PDIB] Z20OCF)
from RCSB PDB. Select 40 pesticide structures;
retrieve 2D /3D structures from PubChem or

l ChemSpider (SDF or Mol2Z2 format).

2. Ligand & receptor preparation

Convert SDF — 3D (if needed) and eneregy-minimize
using VMIMIFFO4, Convert to PDBQT using AutobDock
Tools /f OpenBabel and assign Gastaiger charges.
Remove waters anmnd heteroatoms; add polar
hyvdrogens, assign Kollman charges. Save receptor

<4 as PDBQT

3. Docking (AutoDock Vina)

Center grid on binding site, choose box size to fully
cover pocket (e.g. 22x<x22=<22 A). Set parameters
(exhaustiveness = 6—16, NnuM__MmModes = 9, energy—
range = 3 kcal/mol). Dock each pesticide vs ER-a;

o B record top poses and affinities

4. Printing

Submit selected hits to SWISS-ADME for drug-likeness
(Lipinski rules; solubility, Gl absorption. P-gp substrate,
l CYP Interactions). Summarize key ADME

5. Toxicogenomic mapping

Retrieve genes associated with cyhallot:hrenn formom
databases (CTD, DisGeNET) and literature. Filter for
high-confidence associations; build STRING
Nnetwork and highlight hub genes

SWISS Target Prediction

Therapeutic Translation:

Vaccine Design Approach

downstream of ESR-membrane signaling
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Conclusion :Cyhalothrin showed strong binding affinity with ER-a (—8.6), indicating potent endocrine-disrupting potential.
Toxicogenomic analysis revealed dysregulation of key breast cancer—related genes involved 1n cell cycle, oxidative stress, and inflammation.
Identified molecular targets provide a foundation for vaccine-based and cell-based therapeutic strategies against pesticide-induced breast carcinogenesis.

Identified Targets
ER-a, GPER, MUC1, CCND1, HSPs

Epitope / Antigen Prediction

|

Vaccine Construct Design

|

|
|
|
|

Cell-Based Therapeutic
Application




Lentiviral Vectors derived from T/F HIV-1 for gene delivery

Kaushik Muralidharan, Rishikesh Dalavi, Ajit Chande

Laboratory of Molecular Virology and Genome Editing, IISER Bhopal

INTRODUCTION METHODOLOGY SEQUENCE ANALYSIS

Ce.11 aéld glefie ﬂfletl‘apifs as correcti:e clinicasl.toolszl(l)alx;e Infectivity and Viral Titre Quantification « Sequences were analysed by Multiple Sequence Alignment at

gaimned a lot of traction 1n recent years. SInce : the DNA and protein level using Clustal Omega to check

many such therapies have been FDA approved, largely -24 Hrs Seeding Producer cells/HEK293T Cells SNP’s and (;erljserved Sequence§ °

311{9 to the hC.le}‘I’GIOPhI}}be.nt Pf viral V?fftOf'baS?d gen(ei ‘  To visualize the closeness of viral sequences, a phylogenetic

clivery, which exhibit tissue specific tropism an ' ' i, ‘

Versatirl}i,ty across diseases. Gene trl)lerapy Viaplentiviral O Hrs Transfection ::g EST?EIE; ving HIV-LARL Database tools (FindMode!

vectors is attractive because of their ability to stably ‘

transduce non-dividing cells. This enables targeting of . . | -

a broad range of cell types and long-term stable 12-16 Hrs Media change for transtection 5 TFV9

expression of therapeutics. However, the treatment may ‘ L i

induce an immune reaction within the host. To make : == TeVi0

these therapies less 1mmunogenic, generation and 24 Hrs Seeding target cells (TZM-GFP) i

optimization of novel lentiviral vectors is required. " Gag protein percent identity matrix Pol protein percent identity matrix

Our work focuses on generating third-generation 48 Hrs Wiane Calllectorn o r 100 A2 -— 100

lentiviral vectors. By utilizing the molecular clones of TRV

Transmitted/Founder (T/F) HIV-1, we generated a " :::: %8 . *

panel of packaging vectors to identify candidates for 48 Hrs Virus quantification (SGPERT v . TFV3- .

further rational engineering. By obtaining insights into assay) and infection of target cells FEva TFV4-

the protein sequence and function of these vector . ™ TFVS .

candidates, we strive to devise a vector suitable for " . TFVQI

efficient gene delivery applications. 96.120 Hrs Quantification of Infectivity and TFV10 192 TFV10- | o
normalization with viral titre . PSPPI PCI p P P

SNP’s mapped across GagPol
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RESULTS
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CONCLUSION

* Based on this data, we observe that T/F derived vectors
show a fraction of the infectivity of psPAX2 lentiviral
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Optimization of a High Titer 3rd Generation Lentivirus Production Platform for Cell
and Gene Therapy Applications

Umasish Mohanty!-?, Pruthviraj Mahadeo Chavan!, Sri Prajna Mula!, Debasis Nayak !
|1 Indian Institute of Science Education and Research Bhopal (IISERB), Madhya Pradesh, India
2 Cytoforge Therapeutics Pvt. Ltd., Bhopal, Madhya Pradesh, India

A. Background & Aim C. Results: Different Cell Lines Transduced at 2.5 MOI for Checking the Transduction
Advances in the field of cell and gene therapy has caused diversification of different types of vectors with The lentiviral plasmids plenti EGFP, pPGAGPOL, pREV and pVSVG were transfected in the ratios given below and the | Efficiency

distinct capabilities for generation of novel biotherapeutics. But viral vectors still remains the major tool for titer was calculated using flowcytometric analysis. HEK?293T BHK-21
genetic modification because of their efficient gene delivering capabilities. The broad aspect of these ' '

engineering marvels 1s to directly or indirectly support the development of therapeutic modalities for not only .
oncological conditions but also for orphan diseases and rare genetic disorders. Towards this, development of a DNA:PE|
cost-effective approach for production of these vectors 1s a crucial element which needs immediate

Plasmid Ratios

addressing. Lentiviruses (LV), the vector standard workhorses of CAR based cell therapy development, are DNA (For 100mm Plate) BF )

among a key cost driver—typically comprising 20-30% of total drug product costs. This substantial cost Transduction Enhanc.er
underscores the importance of LV in facilitating these therapies and the pressing demand for creative, lower- (Polybrene) was Used in
cost approaches. We have developed a novel cost-effective approach for generation of high titer LV All Cell Lines Except for
production at par with the industrial standards. The goal is to develop a potent, scalable and cost-effective LV HEK293T and  the
vector particles (LVVP) manufacturing process for easy translation into cGMP settings for clinical grade Primary Mice Cells-
production. Hematopoietic Stem
B. Materials & Methods FL Cell Lineage

Materials used:

Instuments Consumables (Plasticwares) |Consumables(Media & Chemicals) |Cell Lines/ Cells

Biosafety Cabinet Cell culture plates and flasks |DMEM HEK 293T

Cell Culture Shaker incubator |Serological Pipette OptiMEM HEK293T (Serum free suspension adapted)

AKTAFPLC 100 KDa cutoff filters FBS BHK21

Ultra Centrifuge Ultra centrifugation tubes PBS CHO

Hemocytometer MCTs Pluronic F&8 SKN-SH-SY-5Y

gRT PCR Conical bottom tubes PEI MAX VERO

Flow Cytometer Sheath Fluid mHSCs (Primary cells)

The 3™ generation LVVP was produced using a proprietary vector platform by transient transfection of the 4
different plasmids (Transfer plasmid, 2 helper plasmids and 1 envelop plasmid) using polyethyleneimine (PEI)
at an optimized ratio. The downstream purification process involved benzonase treatment of the harvested
LVVP, followed by 0.45um filtration, concentration using 100 KDa cutoft filter followed by ultracentrifugation
by sucrose gradient cushioning. The purified LVVP was transduced in different cell lines and transduction Flow Cytometric Analyses of the Serially Diluted Transductions
efficiency was noted for each.
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Optimizing Upstream Workflows for High-Yield Lentiviral Vector - e t o e mk mk
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J
L Y ) | Y
Plasmid Preparation Virus Production SonEiion-4 ) i
5
Downstream Processing of LV Vectors for Ensuring Minimal Viral Titer Loss in Each Step g ondtion34 e
=]
L ]
Crude Bulk ‘ Endonuclease Treatment and 100 kDa Amicons Ultracentrifugation Based Condition-2 } 420407
Harvest Microfiltration Cut off Filtration Gradient Purification
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. Je &“’/;’ . -
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TV B A D. Discussion:

A high titer LV platform was established using adherent culture system but experiments are

RO G ongoing to establish a serum free suspension adapted producer cell line for a more higher titer
o | L LV production as well as establishment of an up scalable platform which can be used in
l | 1o - ] bioreactor scales. Moreover, for making cell and gene therapies, cost effective, there is an
I 1 urgent need for development of in-vivo CAR generation for which we are trying to pseudotype
Clarification Purification

LV with a safe non targeting viral glycoprotein conjugated with an scFv
for cell specific targeting (T-cells or NK Cells ).
Functional Titer Assay Workflow Further research also includes generating
LVs with reduced phagocytosis by

Plating of the Dilutions in a Pre-seeded macrophages for efficient gene transfer.
plate with Calculated No. of Cells

Serial Dilution of LV Supernatant

E. Conclusion:

The optimized protocol yielded a high titer LVVP in the crude harvest itself. Moreover, along with
the downstream purification strategies used to obtain a highly pure LV VP with minimal loss in all
the processes exemplifies a cost-effective approach. The particles being highly potent which is
demonstrated by its transducing capabilities of different cell lines including primary cells, without

Readout can be by 3 Different Methods the use of any transduction enhancer makes it a robust system for cell and gene therapy
applications.
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ABCC6-Deficient iPSC-Derived Liver Organoids as a Platform for Metabolic and Therapeutic Investigation in

Pseudoxanthoma Elasticum

' Devika N S, Aiswarya S, Bismi Basheer, Gayathri Vijayakumar, Vidhya J, Indulekha Pillai
@AMRITA EsiEiRe; . e
ARSI B|0TECHNOLOGY School of Biotechnology, Amrita Viswa Vidyapeetham, Kollam, Kerala
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Pseudoxanthoma Elasticum (PXE) 1s a rare genetic disorder caused by ’ '

loss of functional ABCC6, leading to symptoms such as angioid streaks,
vascular problems, and yellowish skin papules. Although ABCC6 1s

mainly expressed 1n the liver and kidney, the disease affects tissues that
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Gene knock-out confirmed using qRT-PCR
Figure 2: Both wild-type and knockout hiPSCs differentiated into different hepatic lineages
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[ RESULTS } Figure 3: IPA Analysis data
qRT-PCR using ABCC6-specific primers confirmed the successful gene knock-out in { CONCLUSION AND FUTURE PERSPE CTIVEJ

1IPSCs. The differentiated hepatic lineages express different markers at various stages.

Understanding the molecular mechanisms in Pseudoxanthoma elasticum provides new

Since ABCCO 1s said to be a metabolic disease, the untargeted metabolomics ot KO therapeutic targets and insights relevant to PXE, GACI, and chronic kidney disease. Building

revealed a significant upregulation of Kynurenic acid and Hippuric acid. This data on this, ongoing targeted metabolomics and gain-of-function studies in ABCC6 KO liver

suggests that the metabolic changes seen in PXE may be caused by an integrated role  105114ids aim to confirm the role of kynurenic acid and Wnt/B-catenin signaling in disease

of Hippuric and kynurenic acid-mediated metabolic shifts. progression.

ABCCB6 expression [ REFERENCES 1

1.9-

— % Jansen, Robert S., et al. “ABCC6 prevents ectopic mineralization seen in pseudoxanthoma

| elasticum by inducing cellular nucleotide release.” Proceedings of the National Academy
of Sciences 110.50 (2013): 20206-20211.

-
o
l

Fold change

ot
3
I

¢ Plimers, Ricarda, et al. “Investigation on ABCC6-Deficient Human Hepatocytes
Generated by CRISPR—Cas9 Genome Editing.” Cells 14.8 (2025): 576.

0 . 0 - |
O O

& ACKNOWLEDGEMENT |
&€ We are immensely grateful for the funding provided by Agilent Technologies. We also thank

Figure 1: Knockout confirmed by qRT-PCR the Amrita School of Biotechnology for the constant support and infrastructure provided.



In-silico screening of Target Genes In Gastric cancer and

» SCienc
%ﬁﬁ‘? Eaﬂ#

Seek and Ye Shall Fiad

Identification of Probiotic Therapeutics
Archana.R and S.Sumathi

Department of Biochemistry, Biotechnology, and Bioinformatics
Avinashilingam Institute For Home Science and Higher Education For Women

Coimbatore-641043, TN, India
Email: archanaramesh214@gmail.com and Ph no: 8438773509

ABSTRACT

Gastric cancer Is the fourth most prevalent and fifth most common
cause of mortality globally, with over half of the population infected with
Helicobacter pylori infection. In India, high rates of gastric infection
Increase the risk of enteric gastroenterology disease. Probiotic have
emerged as potential agent In adjuvant therapy in managing GC
associated with H.pylori infection. An in-silico approach was used to
iIdentify key genes - ATP4A, CUX2, CXCLS8, CHIA, ESRRG, GPER1,
and PTGER3 and H.pylori growth Ilimiting probiotic candidates
Streptococcus thermophillus, Streptococcus bulgaris, Lactobacillus

plantarum, and Lactobacillus rhamonosasus for managing H.pylori-
associated gastric cancer, which will be confirmed by in-vitro studies.

OBJECTIVE

* To identify prognostic genes for H.pylori associated gastric cancer.

* To demonstrate Interaction between selected probiotic and pathogen
H.pylori by analyzing H.pylori growth limiting property of probiotic
specles.

* To study the docking interaction between CXCL8, CUX2 genes and
Streptococcus thermophillus, Streptococcus bulgaris, Lactobacillus
plantarum and Lactobacillus rhamonosasus that might contribute as
adjuvant therapeutic to progression of H.pylori associated gastric
cancer.

INTRODUCTION

Improve overall health.
cancer adjuvant therapy.
assoclated with severe gastrointestinal diseases and
to increase the effectiveness of H. pylori eradication.

various H. pylori strains.

this competitive inhibition supports eradication attempts.

METHODS

Probiotic are live, beneficial microorganism that are administered to

In particular it is found useful to help improve the H.pylori gastric
Considering H.pylori, a class | carcinogen classified by WHO, is
chronic
Inflammation, probiotics are being researched as an adjuvant therapy

To 1dentify specific probiotic strains that are most effective against

H. pylori cannot adhere to the stomach lining when probiotics occupy
binding sites on the gastric epithelium. By lowering the bacterial load,
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Differential Expression Analysis: Using DESeq2, CUX2 and CXCL8 were identified as key genes overexpressed in H. pylori-
associated gastric cancer. CXCLS8, known for promoting inflammation and angiogenesis, was significantly up regulated. STRING
Network Analysis: Seven genes closely linked to CXCL8 and CUX2 pathways were identified, with strong associations with
inflammatory signalling and gastric cancer pathways. Metabolic Modelling: Comparative metabolic models of H. pylori and
Lactobacillus plantarum revealed metabolic competition, particularly in pathways influencing lactic acid and ammonia production.
This suggests the potential for probiotics to suppress H. pylori growth through metabolic interference. Docking Analysis: Molecular
docking of CXCLS8's overexpressed receptor with metabolites produced by Lactobacillus plantarum demonstrated high binding
affinities that infers specific probiotic metabolite modulate inflammatory pathways and reduce gastric carcinogenic signalling.

CONCLUSION

Our study could help to bridge a gap
between H. pylori-associated gastric cancer progression and
the therapeutic potential of probiotic Lactobacillus plantarum.
By integrating gene expression analysis, metabolic modeling,
and docking studies combined approach targeting CXCLS-
mediated pathways and metabolic interactions with
Lactobacillus plantarum serve as a complementary strategy to
Inhibit tumor-promoting mechanisms of H. pylori-associated
gastric cancer progression.
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AIM: To develop and evaluate mannose-functionalized liposomes as a targeted mRNA delivery system designed to enhance uptake and transfection efficiency in antigen-presenting cells (dendritic cells and macrophages), with the
goal of improving the selectivity, efficacy, and safety of mRNA vaccine and immunotherapy applications.

INTRODUCTION SYNTHESIS PROCEDURE

= Efficient delivery of mRNA to antigen-
presenting cells—most notably dendritic GRAPHICAL ABSTRACT OH OH 0 {f(

cells and macrophages—is essential for the / \ HO/\:/K‘/'\;O 1 o O
success of mRNA vaccines and ~ OH OH > be
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= In this study, the lipid synthesis strategy involved introducing an azide group onto the mannose saccharide,  ~_~ ~~ o~~~ ’lj‘N o“xb
. . .. . N .
which was subsequently coupled to a long-chain propargylated lipid scaffold via a copper(l)-catalyzed CF4CHOOH

azide—alkyne cycloaddition (CuAAC), commonly referred to as “click chemistry.” This reaction provided a robust
triazole linkage between the sugar and the lipid, resulting in a structurally stable amphiphilic molecule well-suited
for nanoparticle formulation and targeted delivery applications.

1) H2S04, Acetone 2) NaOH, TBAB, Epichlorohydrin, H20, 500 C 3) NH40OH, NaN3, EtOH, reflux 4)
K2CO3, EtOAC 5) Na-Ascorbate, CUSO4.5H20, DCM:t-butanol:H20 (6:1:1), 6) TFA:DCM

RESULTS AND DISCUSSION
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ABSTRACT

Fanconi anaemia (FA) is a genetic disorder characterized by bone marrow failure and increased susceptibility to malignancies,
caused due to mutation in any one of 22 FA genes which involved in DNA repair pathway. A recent study has suggested a
crucial role for ferroptosis, an iron-dependent form of cell death, in the pathology of FA. Therefore, This study aimed to validate
the FA-IPSC cell line as a model and identify potential therapeutic targets and mechanistic insights through high-throughput
drug screening and CRISPR-Cas9 gRNA screening for FA .The FA-iIPSC cell line was generated from FA-patient fibroblast,
complemented with DOX inducible system and used to study ferroptosis, which can be inhibited by known inhibitors such as
Ferrostatin and Lipostatin-1. Lipid peroxidation, intracellular iron levels, and reactive oxygen species (ROS) were measured to
confirm ferroptosis in the presence and absence of these inhibitors. Other ferroptosis markers and cellular pathways like
autophagy and mitochondrial membrane potential was studied to find out the ferroptosis pathway in FA .High-throughput drug
screening is planned using a diverse library of compounds, with cell viability assessments to identify potential drugs rescuing FA
phenotype and inhibiting ferroptosis. Additionally, a genome-wide CRISPR-Cas9 gRNA screening is planned. Hits from both
screens will be validated through secondary assays and mechanistic studies. Preliminary results demonstrate increased lipid
peroxidation, elevated iron levels, and higher ROS production in FA iPSC cells upon ferroptosis induction, validating this cell
line as a suitable model. Ferrostatin and Lipostatin-1 effectively inhibited these markers, confirming their role as ferroptosis
inhibitors. The planned high-throughput drug screening and CRISPR-Cas9 gRNA screen are expected to identify additional
compounds and genes that can modulate ferroptosis, providing new insights into potential therapeutic targets.
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INTRODUCTION | METHODS AND MATRIALS

Ferroptosis is newly discovered cell death caused due to the
accumulation of excessive iron in the cell..
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Fanconi anemia rare bone marrow failure disorder caused due
mutation in any one the 22 FA genes which involve in DNA repair

pathway.
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Figure 4-Generation of patient specific iPSC from FA patient fibroblast.

Validation of Ferroptosis in Patient specific FANC C6 cell line
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CONCLUSION AND FUTURE STUDIES

. FANCA C6 iPSCs showed increased lipid peroxidation,
ROS, and ferrous levels without doxycycline and
ferroptosis inhibitors, confirming ferroptosis.

Future Research Directions:-

I.  High-throughput drug screening: To identify compounds
that modulate ferroptosis.

II. gRNA screening: To pinpoint genetic regulators of
ferroptosis in Fanconi Anemia..
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Title: iPSC Based Disease Modelling and Therapeutic Development for Diamond-Blackfan
Anemia
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Diamond-Blackfan Anemia (DBA) is a rare congenital bone marrow failure syndrome caused
primarily by heterozygous mutations in ribosomal protein (RP) genes, with RPS19 being the most
frequently affected. These mutations impair ribosome biogenesis, activate stress pathways such
as pb53, and result in erythroid failure. While patient-derived iPSCs have advanced our
understanding of DBA, their use is limited by the scarcity of samples, variability in genetic
backgrounds, and heterogeneity in disease severity. To overcome these challenges, we
established isogenic iPSC-based models using adual strategy ofinducible complementation and
precise genome editing. Codon-optimized RP transgenes were integrated into the AAVS1 safe-
harbor locus under doxycycline (Dox)-inducible control, allowing exogenous RP expression
during editing. Adenine base editors (ABE8e) were employed to introduce splice-site mutations
into endogenous RP genes, which otherwise caused strong negative selection and loss of edited
alleles in the absence of complementation. A dual-fluorescent allele-tagging system
(eGFP/dTomato) enabled bulk isolation of monoallelic and biallelic haploinsufficient populations
without the need for single-cell cloning. Functional assays confirmed that RP haploinsufficiency
led to apoptosis and defective erythroid differentiation, while Dox complementation restored
viability and maturation. This standardized, scalable platform faithfully models DBA
pathophysiology and provides a robust resource for mechanistic studies and high-throughput
therapeutic discovery.
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Introduction Materials and Methods

Hematopoietic stem cells (HSCs) are foundational for lifelong blood and immune

system renewal, with transplantation serving as a treatment for various Cell Sources . — /' — == )
: . . : op o *Stem/progenitor and other Niche cells - c-kit+ cells
hematological conditions. However, the limited availability of transplantable were used as model systems Ny — _—
’ v, ’ ’ ’ . one marrow cells Cells added to the
HSCs is a critical challenge. This poster offers an overview of recent advances in Culture Systems e (e s
engineering hydrogels to mimic the natural HSC niche, aiming to improve ex *Cells were grown in different hydrogel- l
R KR N4 P e by re/olfcatimg cues from the fetal liver based environments to mimic the |
) ) extracellular matrix. _— — | g
v 4 \‘\\\\q_;_ *Variations in composition and stiffness E;;,;: :::,: :;Eciﬁc — 7
:/‘*\ were explored for their effect on cell fluorescent stains —
oo . behavior. : ' Cells encapsulated

inside Hydrogel

" MT f,. . . 5 days culture at 37°C
A TN - *.SLA,H ObJ eCthe Imaging & Morphology and 5%C02
*Microscopy techniques were used to monitor cell shape, growth, and 3D organization.
Development of biomimetic *Morphometric analysis quantified cell spreading and structural features.

Viability & Proliferation

*Standard staining and biochemical assays were applied to assess survival and growth.
*Matrix properties were correlated with cell retention and proliferation.

Cell-Cell Interactions

hydrogels with fetal liver—like
components to assess the growth
and expansion of hematopoietic

stem cells *Spheroid formation and junction integrity were evaluated under different conditions.
*Both suspension and adherent cultures were compared.
Overall Approach
AR, S S A A Wl e s *A combination of imaging, biochemical, and analytical tools provided insights. Hydrogel Scaffold

vessel Pericytes Cells

*Findings emphasize how matrix design influences cell fate in engineered systems.

Results from Literature
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A Relevant results from various literature: A Ctrl FN FG FN+FG
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m L
Phase contrast images of HSCs encapsulated within bioactive PEG hydrogels at days 1, 3, and 14, showing the proliferation and round shape retention of o < ! E 0.2 o o
HSCs. Scale bar: 100 mm (day 1, day 3), 50 mm (day 14). (B) DAPI (blue) and phalloidin (green) staining of HSCs after 14 days of expansion showing 0! o 0 Fibrinogen promotes cell aggregation in the
the cell morphology retention and gel structure integrity. Scale bar: 25 mm. (Cuchiara et al., 2016) HAOFN HASOFN HA S00FN HAOFN HA SOFN HA S00FN HAOFN HASOFN HA S00FN establishment of cell-cell junctions. A) Macroscopic
o - images and analyses of roundness and area of spheroids
(a)Human MSCs were seeded on FN—HA. hydrogels containing d|ffe2rent amounts qf FN. Quantification of treated with fibronectin and ﬁ'brl'mogen at 72 h. Seale
cell spreading was performed by measur!ng cell b) sprgad area (Lm?2), c) aspect ratio, and d) roundness bar = 100 pwm (LI R et al..2022)
(a) (b) * % % (mean £SD, n > 100 cells, conditions in triplicate).(Trujillo S et al., 2020)
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o = 20000- 3 3 100- B Hard - H
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300 pMm Q‘b‘" Q‘Hﬁ 0’5“ : 15000 - % 5= - HEFd e H
& z ﬁ 5()- 1 Susp-H
(C) 200,000 - * ® 10000- 37:5' mg/mil L: - 5] B8 Susp-N
= CTRL 5 e
-] 150,000 1 SU08 0- |
> T z 0 5 7 10
= 2 100,000 - g~ - Time (Days)
L T
50,000 - L FIDE CORG: Snaam) Fibrin hydrogels support the viability of Lin-/cKit* cells: (a)
; T confocal images of live (green) and dead (red) cells in soft and
300°1m 300 pm 5 (c) Biochemical analysis of DNA content in constructs. # indicates significant difference between 12.5 and E hard fibrin hydrogels as well as in suspension culture (Susp)
,: _.; ,,: 37.5 mg/mL (p < 0.01) and * indicates a significant difference compared to all other groups (p < 0.001); (d) L grown in hypoxia (H) or normoxia (N) and (b) quantification of
Q»a“"l Q-s% Q*a‘?s Live/dead analysis showing a high degree of cell death for the lowest concentration (12.5 mg/mL) and viability of Lin-/cKit* progeny using the NucleoCounter®. Day 0
i d cell viability in the highest trati 50 L). Scale bar = 200 um. (G Jetal.,2018 i i
(a) Live/dead stained images of FBs encapsulated within CHAF_1 and cells on tissue culture plastic as a control (CTRL). Imaging was increased cell viability in the highest concentrations (50 mg/mL). Scale bar hm. (GansauJ et 3 ) z v(aalue§ a;c—;from(’c:hi stlarzt(ljr;%cell suspension.
performed on days 1 and 3. Live cells are stained in green, and the dead cells in red. (b) PrestoBlue assay results for FBs encapsulated within E (Garcia-Abrego C et al., )
Ty

CHAF_1 at Figure 8. (a) Live/dead stained images of FBs encapsulated within CHAF_1 and cells on tissue cul ture plastic as a control (CTRL).
Imaging was performed on days 1 and 3. Live cells are stained in green, and the dead cells in red. (b) PrestoBlue assay results for FBs
encapsulated within CHAF _1 at 1, 3, and 7 days. (c) FBs seeded on tissue culture plastic are used as a control (CTRL). (Bindi B et al.,2023)

Conclusion Future Directions

*Biomimetic hydrogels provide supportive microenvironments for hematopoietic stem cell eDevelop hydrogels enriched with ECM components that closely mimic the structural and biochemical
growth and expansion. features of the fetal liver microenvironment to provide a supportive niche for HSC growth.
*Replicating niche-like cues helps address current limitations in ex vivo HSC culture. eEstablish co-culture systems with niche cells to enhance hematopoietic stem cell maintenance, self-
*These approaches offer promising directions for transplantation and regenerative medicine. renewal, and expansion in a physiologically relevant setting.
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/Introduction: \ /Methodology:
Induced pluripotent stem cells (1IPSCs) offer powerful opportunities for disease modeling, particularly for
studying genetic disorders. However, generating iIPSC models for rare diseases remains challenging due to limited ‘
patient availability and complex genetic characterization. Recent advancements have focused on developing 1sogenic = | ) ' .
1PSC lines to ensure genetic consistency and eliminate background variability. Conventional CRISPR/Cas9 genome > Repmgrammm,g > v .. ’
editing relies on double-strand breaks (DSBs) and homology-directed repair (HDR), which often result in low editing PBMNC WT-iPSC Erythroid cells
efficiency, unintended insertions or deletions, and labor-intensive clonal screening. Base editors (BEs) overcome N A 4
these limitations by enabling precise single-nucleotide conversions without generating DSBs. Adenine base editors Normal Donor Gene —_h” ‘ Phenotype
(ABEs) mediate AT to G+C substitutions, while cytosine base editors (CBEs) catalyze C+G to TeA transitions. Editing L al Comparison
However, their delivery efficiency, editing window characteristics, and comparative performance in 1iPSCs have not v ;
been systematically evaluated. In this study, we established a high-efficiency, mRNA-based base editing platform for > / B \\ ’G % 0
1IPSCs using optimized electroporation conditions. By comparing multiple ABE and CBE variants, we achieved & . O
highly efficient, scarless editing across single and multiplexed disease-relevant loci, enabling the rapid generation of muItS:ngteinli)cSC Q &

Qogenic 1PSC models for rare hematological disorders.

. /

/

Results: Optimization of efficient mRNA electroporation Generation of isogenic iPSC for modelling Congenital Dyserythropoietic Anemia type-1 (CDA-1)
. Un-transfected 1500 — o lug 16000 1 CDANI- F360L CDANI- R623W CDANI- T884A4 CDANI- R946W
E E [Laons > [Exon13 > [ Exon21 >
: B T o - S =
8 \ 1000V — 1000 + S = [[Exen20 >
= A = 3 2ug| (= 8000 -
'Té A 1200V 500 1 I Tz, y 4000 TTTCGAA,CAGCTCCACTTTCC 466G TGAGC.GGAAGC AATTTGCTGIGG GGCTA,CA,.CTGGTGGCAGATCIGG TGTGC;GGGC,GC,,TGCTTCCAGAGG
= [N\ = \ | po
(4 1300V 0 I Z Sug 0 . I 100 7 H Predicted 100 - R H Predicted 100 - H Predicted £ ; 1007 ® _ m Predicted
Bliaa 1000 1200 1300 s g 2ng Swg g > o = ™
, = Iz ® Observed " = -~ ® Observed = % Observed = & % Observed
— GFP — GFP > = S & S
z T & > g
Comparison of ABE variant in K562 cells S 50 - 2, 5 E
<l (\! O 1 50 7] U ]
< - en e ~ gl\ Fn' <
2 2] RN KLF1L300P (HE gRNA) = ABE-8¢ NGG UTR- = % > * © S S
100, & ° 3 o o 3 - = .ﬁl o “ = = - - 2 3
2 ® ABE-8¢ NG(D) UTR- 2o e T o S-S 2 2 n S % . © - 2 “ = "
g 0 — — - = 0 = | = =) . e g S o« : : S : I ; S g
2 75 A = ABE-8e NG(DL) UTR- 23 _a A » = A A Target BS1 T+BS1 0 0 - == — = == ==
S 80 »n I S@ = 23 S @ 7 @ Target BS Target+BS = — ~ — ~ ~ I
= m ABE-8e Spry UTR- S8 hE ol < & + & = 3 e g0 2 A A 4 A A
O 50 - - %na g& 5 g a g ° ° ° ° ° ° g 2 2 ‘t :
9 X z 2 &z =% Hematopoietic differentiation of CDAN1 mutant iPSC - T B %
IS = = ?n T
X 25 Eg Mesoderm =
soss Bed #5823 §m3ge sogw = Induction | [acmatopotetic specification Erythroid differentiation analysis
0 - S S s (S T o g = é. S 3 S c'l s 3 Da)I,_0 I CDag i —@—  Wild type
Al8 Unedited Other conversion Out side window Indels Multiple gene editing B D43 Tl n=3 —@— CDANI1 T884A Homo
e CDANI1 T884A Het
CD45'om < 4= CDANI1 F360L H:tee;::))
HEK Site-2 (LE gRNA) B T & CD235hio =
100 - :g m ABE-8e¢ NGG UTR- 'z X 3
N CD71'° w
o W ABE-8e NG - y . -
. 5 s ' " ABE-8¢ NG(D) UTR | iPSC seeded HPSC harvested it
2 8 Q = ABE-8¢ NG(DL) UTR- 5 __}/,)K ix
2 — — Editing quantification @ ) " —:,- 1= :’._ = 0 */ _ \.
S 50 - ~ ® ABE-8e Spry UTR- E 1A | ‘?W - \ 3
Q g ~ ~ 3 M'L\/\/\:’L\/\/\ = [ \‘53 {*\"f:k"%. /| 1 \ otr—TTTTT"T T T 1
<£ = “ N "A"‘Lb\lc\ . ABE8e mRNA = /l { \ ,‘ & /1 \ D0 D2 D4 D5 D7 D10D12 DZ D4 D6
L 25 - N S S DAN1 T884A gRNA \ 1/ \
cota N\O®ne :S EE TIon monow NI coce con® cone AT oo /\A‘Lb\,\ LT Y2004 gRINA TR T - : B Eageed A
SN RN © < S AN doas SSSS SSnd SSaS arma oSS KLF1L300P gRNA o . '
cc'cc .:cc - clcc oo cc'cc cc'cc cc'co S cc'oc . £ 1 s (, A ) 0
0 A2 A3 A12 Al4 A16 Unedited  Other Out side Indels <Zﬂ = 3*&.,@ ,,[”%-& “\ - | \\ COlOHy formatlon analySlS
conversion  window a $ | \x 5 x q 40—
e - i 1\ \ (A CFU-GEMM
Comparison of CBE variant in K562 cells 100 N S "25pmoles XX Ll A el X (. Y- @ CFU-GM
S ; ' T T T @ 30
3 : 5 KLF1 W313R = CBE4 max = igz““l = . T ), E CFU-G
: Qe > F = 60 O =% . ; M | N\ o ;
0 e g vz % = CBE6b V106W UTR - 2 P z = h \ I\ o CFU-M
\id - oI 3 = a ﬁ /‘f"\ / \ f \ ks B CFU-E
= B IS 3 2 ® Tad CBEa UTR - T 5 °g \ | |\ )
£ 154 3 & =l g = 7| i} |\ 2 N BFUE
5 S z = CBEGb IVT UTR- 3 SN S, s A -
S = CBE Spry UTR - S ‘ .,
50 - E ,nk A
© o SS3 m_— SsS Z = / '\
S " = 7 0 — — é - AY. [\
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k C2 C5 Cé C7 9 C13 C17 Unedited w0 I(Ii,t:lrzon Out side window Indels /
ﬁ onclusion: \
» Established a robust, integration-free mRNA-based base editing platform in iPSCs.
» Achieved near-complete ABE and CBE editing efficiencies with high precision.
» Demonstrated the ability to modulate editing efficiency to create heterozygous or homozygous mutations using gRNAs with predicted editing efficiency.
» Enabled efficient single and multiplexed editing of disease-relevant mutations, including challenging loci.
Q Facilitated rapid generation of 1sogenic 1IPSC models for disease modeling and drug discovery applications. /
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3-hemoglobinopathies

« Sickle cell disease (SCD) affecting approximately 0.2 million individuals in India and an estimated 7.7 million individuals globally.’

* [B-thalassemia accounts for around 0.3 million cases globally, with India contributing substantially to the disease burden, as nearly 40,000

affected infants are born annually.?

* Reactivation of fetal hemoglobin (HbF) is a well-recognized approach to ameliorate 3-hemoglobinopathies. Elevated HbF can compensate

for defective or insufficient 3-globin production

 PRR-BE1 strategy is a bi-functional gene editing of the beta-globin locus for activation of fetal hemoglobin and downregulation and knock-

out of defective adult globin?
 CRISPR/Cas9-induced double-strand breaks (DSBs) have the potential
rearrangements, large unintended deletions, and translocations.?

« Optimizing the scale-up process to maintain efficiency, functionality, and safety through the use of clinical-grade reagents is essential for

clinical transplantation applications

to cause genomic alterations,
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(A)Percentage of gene manipulation as measured by ddPCR for quantifying deletions in PRR-bE1 and Sicilian
HPFH. Indel analysis of AAVS1, BCL11A enhancer, and HBG promoter by ICE. (B) percentage of HbF*Ve cells
In erythroblasts generated from edited cells

PRR-BE1 gene-editing reverse the Sickle cell disease and [3-Thalassemia phenotype

KaryoStat™ analysis reveals no detectable structural abnormalities
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(A)Percentage of gene editing. Indels measured by Sanger sequencing and ICE analysis (B) Proportion of hemoglobin tetramer by variant HPLC. (C)
Percentage of sickle cells. Gene-edited patient HSPCs were differentiated into erythroblasts in hypoxia (5% O,) and the FACS sorted reticulocytes were treated
with 1.5% sodium metabisulfite. (D) Percentage of gene editing in HSPCs. Deletion/Inversion (Del+Inv) in PRR-BE1 as quantified by ddPCR. Indels of the cut

sites PRR and BE1 were measured by ICE analysis. (E) Representative globin chain HPLC chromatograms
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KaryoStat™ analysis of healthy donor derived HSPCs following CRISPR/Cas9-mediated PRR-BE1 deletion. The
wholegenome coverage analysis with a resolution of >1 Mb revealed that the PRR-bE1 gene-edited HSPCs exhibited
neither loss nor gain of chromosomal copy number

ddPCR analysis reveals no significant loss within the editing window

CAST-Seq analysis reveals no off-target
mediated translocations
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PRR-BE1 gene editing does not induce
micronucleus formation in HSPCs
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Percentage of micronucleus (MN) in Mitomycin C treated, unedited, and PRR-
BE1 gene-edited HSPCs scored 48 h post nucleofection after staining with
Giemsa was not significantly greater than in unedited control HSPCs Chr16 identified by CAST-Seq

Circos plot showing off-target mediated translocation between the PRR-BE1
on-target site and BE1 off-target site in PRR-BE1 edited samples present in
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ddPCR copy number variation analysis showing that there is no significant loss in the editing window (A) Showing the
extended deletion upstream to the PRR cut sites, (B) Showing the extended deletion upstream to the BE1 cut site

Summary

* QOur study highlights the critical role of the PRR-BE1 region in the regulation of fetal hemoglobin

 (HbF) Establishes this locus as a prime target for gene editing strategies aimed at robust HbF
induction.

 To facilitate the clinical translation of this approach, the development of optimized, Good
Manufacturing Practice (GMP)-compliant protocols for large scale editing and production of PRR-
BE1—edited HSPCs is essential. P

* Preliminary data indicate that our gene-editing strategy is safe, further comprehensive analyses are
warranted to fully characterize its safety profile.
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ABSTRACT

Background: Reliable immune biomarker measurement is essential for the safe and effective development of cell and gene therapies (CGT).
Cytokines are critical indicators of therapeutic response, immune activation, and treatment-related toxicity, including cytokine release syndrome
(CRS) and neuroinflammation. However, cytokine quantification across serum, plasma, and cerebrospinal fluid (CSF) remains challenging due to
matrix-dependent interference, low analyte abundance, and assay variability, limiting the correlation of preclinical data with clinical outcomes
and reducing regulatory confidence.

Method: A suite of matrix-validated ELISA assays was developed for reproducible cytokine detection across serum, plasma, and CSF. Each assay
was validated for accuracy, sensitivity, precision, linearity, and recovery using matrix-matched calibrators and optimized diluents to reduce
interference. Calibration was aligned with NIBSC international standards to ensure traceability and harmonization across studies and

laboratories.

Results: The validated assays demonstrated high reproducibility and sensitivity for key cytokines relevant to CGT - including but not limited to IL-
6, IL-10, IFN-y, TNF-a, and GM-CSF. Enhanced detection enabled reliable quantification of low-abundance cytokines in CSF, supporting
applications in neurotoxicity and CNS-targeted therapies. Cross-matrix validation confirmed strong correlation between sample types, enabling
consistent biomarker interpretation across preclinical and clinical studies. Alignment with international standards improved inter-laboratory

reproducibility and data comparability for multi-centre trials.

Clinical Impact and Conclusion: By integrating matrix validation and standardized calibration, these assays close a critical translational gap—
the lack of harmonized, comparable cytokine data across studies and institutions. Standardized quantification enhances dose-response
modeling, improves real-time safety monitoring, and enables data-driven clinical decisions. The use of international reference materials aligns
with regulatory expectations and advances global standardization of immune monitoring in CGT. By ensuring analytical comparability across
sample types, laboratories, and studies, these assays strengthen regulatory confidence and accelerate the safe, standardized translation of cell

and gene therapies from research to clinical practice.

INTRODUCTION

Cell and gene therapies (CGT) have transformed therapeutic development by enabling precise, durable immune modulation in cancer, rare
disease, and regenerative medicine. However, these innovative modalities also induce complex immune responses that must be tightly
monitored to ensure patient safety and treatment efficacy. Cytokines such as IL-6, IL-10, IFN-y, TNF-a, and GM-CSF serve as critical biomarkers
for assessing therapeutic activity and detecting immune-related toxicities, including cytokine release syndrome (CRS) and immune effector cell-

associated neurotoxicity syndrome (ICANS).

Yet, quantifying cytokines accurately across biological matrices - serum, plasma, and cerebrospinal fluid (CSF) - remains a major analytical
bottleneck. Protein complexity, matrix interference, and low analyte abundance often cause poor recovery and reproducibility. Most commercial
cytokine kits are validated only in serum or plasma, offering limited sensitivity or validation in CSF or other translational matrices. This lack of

matrix validation leads to inconsistent data between preclinical and clinical studies, reducing confidence in immune monitoring and delaying

regulatory acceptance.

Proinflammatory
Cytokines Release

IL-6, IL-8, TL-10, nh
IEN-v, TNF-a, MCP-1, GM-CSF

Endotelial cell

Sequence of eventsleadingto Cytokine Release Syndrome

@ IFN-y
TNF-«

To address this translational gap, we developed and validated matrix-optimized ELISA assays,
aligned with NIBSC International Cytokine Standards, for accurate and reproducible cytokine
detection across multiple matrices. This approach establishes analytical traceability, supports
inter-laboratory harmonization, and enables meaningful immune biomarker interpretation in
CGT research and clinical trials.

o Monooe Ten This poster presents the development of matrix-validated, NIBSC-aligned ELISA assays that

e : :-.'.'-_- . ST ensure accurate and reproducible cytokine quantification across serum, plasma, and CSF. By

.:'.-'-““eg addressing the limitations of current commercial kits, these assays enable reproducible,

iy . regulatory-ready cytokine data across studies and laboratories. Ultimately, this work supports
N faster and safer translation of next-generation CGT products from bench to bedside.

RESULTS AND VALIDATION
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Figure 1: Assay dynamic ranges were compared against reported clinical Cmax values for key cytokines, including IL-1f3, IL-6, IL-8, IL-10,
IL-12, IL-15, IFN-y, and GM-CSF. Figure 2: The working range of each PrecisionBind™ Human Cytokine ELISA overlapped with or
exceeded the expected cytokine concentrations observed across healthy, inflammatory, and cytokine storm conditions.
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PARALLELISM AND ANALYTICAL LINEARITY

Parallelism Across Dilutions - IL-12 ELISA

—-e- Expected (Standard Curve)

—e— Serum

—=— Plasma
o —a— CSF

1:100

1:800 1:1600

Dilution

1:200 1:400

1:3200

1:6400

1000 =
800
600

400

Interpolated Concentration (pg/mL)

200+

Parallelism Across Dilutions — GM-CSF ELISA

® - Expected (Standard Curve)

—&— Serum
—m— Plasma
i

Figure 7 and 8.
Parallelism Qcross
serial dilutions for IL-12
and GM-CSF ELISA

respectively.

Serum, plasma, and
CSF samples show
dilutional linearity
parallel to the
standard curve,

confirming  consistent

1:1

18 116

Dilution

1:2 1:4 132

1:64

response and absence
of matrix effects.

Serial dilutions of serum, plasma, and CSF samples demonstrated parallelism with the expected standard curve for both IL-12 and GM-
CSF ELISAs. The comparable slopes across matrices and observed linearity confirms robust assay performance, traceable
quantification, and elimination of matrix interference - a critical requirement for reliable cytokine measurement in Cell and Gene
Therapy (CGT)-related samples.

These results reinforce the traceability and analytical reliability of the PrecisionBind™ cytokine ELISAS, ensuring accurate quantification
of clinical and translational samples within physiologically relevant ranges.
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Figure 3: Standard Curve with Clinical Relevance
Assay dynamic ranges were compared against reported clinical Cmax values for
key cytokines, including IL-1p3, IL-6, IL-8, IL-10, IL-12, IL-15, IFN-y, and GM-CSF. As
shown in Figure X, the working range of each PrecisionBind™ Human Cytokine
ELISA overlapped with or exceeded the expected cytokine concentrations
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Figure 6: This heatmap summarizes the reproducibility performance
for each cytokine, where greener values indicate higher precision
(lower %CV). Minimal variability was observed between assay runs and
manufacturing batches, confirming the robustness and stability of the

Figure 5: Mean recovery across dilutions in serum, plasma, and CSF.

Intra-assay %CV

Spiking and dilutional recovery studies across serum, plasma, and
CSF confirmed excellent linearity (R* > 0.995) and consistent recovery
within £10% of the expected concentration across multiple cytokine
assays. The data demonstrate traceable, reproducible quantification

observed across healthy, inflammatory, and cytokine storm conditions. of cytokines across complex biological fluids. assay formulations.
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= Figure 6: Distribution of OD450 values per standard across all lots,
Figure 9. Traceability hierarchy showing o5l highlighting close signal spread with minimal outliers.
how measurement uncertainty increases '
from primary reference materials to , . _ _
patient samples (eg. NIBSC WHO Intra- and inter-assay precision was evaluated across more than 50 independent production lots
001 for each cytokine. The results demonstrate exceptional lot-to-lot consistency, with mean intra-
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Figure 10. NIBSC Validation - Human IL-15 (95/554) and GM-CSF (88/646):

Figure 13: Interpolated
concentration (% recovery). The
grey box indicates ideal 100 +/-
20% accepted recovery as per US
FDA Bioassay Guidelines.

Clinically, this approach empowers investigators to detect toxicity earlier, tailor therapeutic
dosing, and generate reproducible immune monitoring data across the CGT development
continuum - transforming cytokine measurement from a variable research assay into a globally
standardized translational tool, advancing the precision and safety of next-generation cell and

Figure 14: Mean recovery + range
across serum, plasma, and CSF
matrices for eight cytokine ELISAs.
Bars represent average recovery,
and error lines denote assay
variation.

gene therapies.

Figure 15: Regression comparison
of serum versus plasma and
serum versus CSF recovery
profiles. Near-unity slopes and
high R’ values demonstrate
strong matrix equivalence across
sample types.

400
Concentration (pg/mL)

Calibration curves demonstrate assay
traceability to NIBSC reference standards (X), confirming equivalence of 1 IU = 55.9 pg/mL for IL-15 and 1 IU = 166.8
pg/mL for GM-CSF. Similar NIBSC Validation was conducted for all PRECISIONBIND cytokine ELISA.

By integrating matrix optimization with NIBSC-aligned calibration, these assays deliver:
e Consistent, sensitive cytokine quantification across serum, plasma, and CSF
e Accurate differentiation between systemic (CRS) and CNS-related (ICANS) inflammation
e Reduced assay variability and enhanced inter-lab comparability
e Regulatory-ready, traceable data supporting harmonization across studies and sites

i o 0 assay CVs below 4% and inter-assay CVs below 5% across all analytes tested. Across seven cytokine
ELISAs, intra- and inter-assay precision remained below 10% at all tested levels (12.5-800 pg/mL),
confirming reproducibility across dynamic range and matrix types. Variation decreased with
increasing concentration, aligning with theoretical expectations for immunoassays. This

consistency enables reliable biomarker quantification in both preclinical and clinical CGT studies.

CONCLUSION

Matrix-validated and internationally standardized ELISA methods address a fundamental unmet
need in CGT analytics - the absence of reliable, matrix-compatible commercial assays capable of
detecting cytokines reproducibly across diverse biological samples.

Precision
Reproducibility
Standardization

Scan to view our
complete Validation

About Krishgen Biosystems:

Established 2003, Krishgen is an immunoassay manufacturer based out of Mumbai, India. Our key products include assays for mAbs, bispecific
antibodies, antibody-drug conjugates, peptides as well as a wide range of cytokine and biomarker ELISA across various species.

Our products are well validated, sensitive, robust and competitively priced. As of April 2025, Krishgen ELISA have been cited in 5000+ publications
worldwide. Learn more about Krishgen and ELISA we offer at www.krishgen.com or reach out to us at kbiinfo@krishgen.com
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Introduction

Sensorineural hearing loss (SNHL) 1s the most common form of permanent hearing impairment in mammals, caused by the irreversible loss =
of sensory hair cells in the cochlea and vestibular system. This degeneration may occur due to ototoxic drugs, aging, or acoustic trauma. - wsaii
3 ! i ’ ] | (o]

Atohl

: - : : - : : : . : g
Unlike non-mammalian vertebrates, mammalian hair cells lack regenerative potential, making hearing loss permanent. Current interventions “a

such as cochlear implants provide partial restoration but do not replace lost sensory cells. Studies in non-mammalian models have shown
that ATOH1, a basic helix-loop-helix transcription factor, can induce supporting cells to transdifferentiate into functional hair cells. Building | i V
on these findings, this study explores a regenerative approach using CRISPR/Cas9-mediated site-specific integration of ATOH1 into B A s P
supporting cells of the mammalian inner ear. Adenoviral knock-in vectors carrying ATOH1 were successfully constructed and validated In D
vitro, demonstrating efficient vector generation. This system will be evaluated in deaf mouse models to determine long-term expression and
supporting cell transdifferentiation into hair cells. The approach aims to establish a foundation for gene-based hair cell regeneration, offering —
a promising and potentially durable strategy for restoring hearing function in mammals.

Methodolooy

CRISPR/Cas9 mediated knock-in of Atohl cDNA for gene editing
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BACKGROUND

The zinc-finger transcription factor BCL11A is one of the major repressors of y-globin expression and disrupting it as a therapeutic strategy is limited by its essential
roles in survival, erythroid differentiation, broader hematopoietic and neural functions, making global inhibition clinically unsafe. BCL11A recognizes a preferred DNA
sequence motif (TGACCA) that is duplicated within the HBG (y-globin) promoters and it binds preferentially to the distal TGACCA motif (-115 cluster). Targeting this
distal motif is an established therapeutic strategy for 3-hemoglobinopathies with multiple ongoing trials. In addition, studies have shown that BCL11A also binds to
other TGACCA motifs and therefore, we screened the entire (3-globin locus for altering TGACCA motifs using adenosine and cytosine base editors in the human erythroid

progenitor cell line.

METHODOLOGY RESULTS
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Guide RNAs with NGG PAM targeting the TGACCA motifs in the entire 3-

globin locus were designed, cloned in lentiviral plasmids and transduced in 100 100+
erythroid cell line expressing ABE/CBE base editors (Fig.1). The expanded ~ 80- . 80-
cells were checked for editing percentage and further terminally E 60~ 5 con
differentiated into erythroid lineage for characteristics assays. § ‘0. ..
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Fig.1 Schematic representation of the screening experiment workflow using lentivirus transduction in HUDEP?2 stable cells
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Further, the guide RNA that induced higher fetal globin was validated with Flgda  Tondution% - Fig4b Editing % Flgde  HbEvecdls %
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To identify functional TGACCA targets within the (-globin cluster, we o0
screened multiple gRNAs in HUDEP2 cells stably expressing ABE7.10. Among 1007 5 |
these, one candidate site showed a notable increase in fetal globin levels 80- 60 < 807
relative to the control (Fig. 3). Substitution of ABE7.10 with the more active = 60- = 2 60-
ABES8e variant markedly enhanced editing efficiency to ~88%, resulting in a o .o S 40 O Lo
moderate but reproducible elevation in HbF expression compared with the © i 20 E .
AAVS1 (Fig. 4). A similar HbF induction was observed with CBE (Fig. 5). 207 I_
Transient editing with ABESGe mRNA and synthetic sgRNA achieved >80% 0- — 0 ; 0
- o _ L _ 6 N AN A C7 C9 C10 C6 C7 C6 C7 O NS S
editing efficiency, accompanied by a nearly twofold increase in HbF levels @ 0 QT & — — = — MEARSRN
relative to the AAVS1 control, as determined by flow cytometry and HPLC 0}"“ ng;f’
analyses (Fig. 6). These findings suggest that BCL11A may exert additional
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the [(-globin locus, beyond its well-characterized binding at the distal
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Fig.6a. Editing percentage of different guides using EditR. Fig.6b. Percentage of HbF +ve cells before and after differentiation of edited
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